Ergodicities and exponential ergodicities of Dawson–Watanabe type processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 342-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under natural assumptions, we prove the ergodicities and exponential ergodicities in Wasserstein and total variation distances of Dawson–Watanabe superprocesses without or with immigration. The strong Feller property in the total variation distance is derived as a by-product. The key of the approach is a set of estimates for the variations of the transition probabilities. The estimates in Wasserstein distance are derived from an upper bound of the kernels induced by the first moment of the superprocess. Those in total variation distance are based on a comparison of the cumulant semigroup of the superprocess with that of a continuous-state branching process. The results improve and extend considerably those of Friesen [Long-Time Behavior for Subcritical Measure-Valued Branching Processes with Immigration, arXiv:1903.05546, 2019] and Stannat [J. Funct. Anal., 201 (2003), pp. 185–227; Ann. Probab., 31 (2003), pp. 1377–1412]. We also show a connection between the ergodicities of the immigration superprocesses and decomposable distributions.
Keywords: Dawson–Watanabe superprocess, coupling, strong Feller property, stationary distribution, exponential ergodicity.
Mots-clés : immigration
@article{TVP_2021_66_2_a6,
     author = {Z. Li},
     title = {Ergodicities and exponential ergodicities of {Dawson{\textendash}Watanabe} type processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {342--368},
     year = {2021},
     volume = {66},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a6/}
}
TY  - JOUR
AU  - Z. Li
TI  - Ergodicities and exponential ergodicities of Dawson–Watanabe type processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 342
EP  - 368
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a6/
LA  - ru
ID  - TVP_2021_66_2_a6
ER  - 
%0 Journal Article
%A Z. Li
%T Ergodicities and exponential ergodicities of Dawson–Watanabe type processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 342-368
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a6/
%G ru
%F TVP_2021_66_2_a6
Z. Li. Ergodicities and exponential ergodicities of Dawson–Watanabe type processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 342-368. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a6/

[1] Mu-Fa Chen, From Markov chains to non-equilibrium particle systems, 2nd ed., World Sci. Publ., River Edge, NJ, 2004, xii+597 pp. | DOI | MR | Zbl

[2] Mu-Fa Chen, Eigenvalues, inequalities and ergodic theory, Probab. Appl. (N. Y.), Springer-Verlag London, Ltd., London, 2005, xiv+228 pp. | DOI | MR | Zbl

[3] D. A. Dawson, “Measure-valued Markov processes”, Ecole d'Eté de Probabilités de Saint-Flour XXI–1991, Lecture Notes in Math., 1541, Springer, Berlin, 1993, 1–260 | DOI | MR | Zbl

[4] D. Duffie, D. Filipović, W. Schachermayer, “Affine processes and applications in finance”, Ann. Appl. Probab., 13:3 (2003), 984–1053 | DOI | MR | Zbl

[5] E. B. Dynkin, “Three classes of infinite-dimensional diffusions”, J. Funct. Anal., 86:1 (1989), 75–110 | DOI | MR | Zbl

[6] E. B. Dynkin, An introduction to branching measure-valued processes, CRM Monogr. Ser., 6, Amer. Math. Soc., Providence, RI, 1994, x+134 pp. | DOI | MR | Zbl

[7] A. M. Etheridge, An introduction to superprocesses, Univ. Lecture Ser., 20, Amer. Math. Soc., Providence, RI, 2000, xii+187 pp. | DOI | MR | Zbl

[8] M. Friesen, Long-time behavior for subcritical measure-valued branching processes with immigration, 2019, arXiv: 1903.05546

[9] M. Friesen, Peng Jin, B. Rüdiger, “Stochastic equation and exponential ergodicity in Wasserstein distances for affine processes”, Ann. Appl. Probab., 30:5 (2020), 2165–2195 | DOI | MR

[10] R. K. Getoor, J. Glover, “Constructing Markov processes with random times of birth and death”, Seminar on stochastic processes (Charlottesville, VA, 1986), Progr. Probab. Statist., 13, Birkhäuser Boston, Boston, MA, 1987, 35–69 | DOI | MR | Zbl

[11] Peng Jin, J. Kremer, B. Rüdiger, “Existence of limiting distribution for affine processes”, J. Math. Anal. Appl., 486:2 (2020), 123912, 31 pp. | DOI | MR | Zbl

[12] M. Keller-Ressel, A. Mijatović, “On the limit distributions of continuous-state branching processes with immigration”, Stochastic Process. Appl., 122:6 (2012), 2329–2345 | DOI | MR | Zbl

[13] A. E. Kyprianou, Fluctuations of Lévy processes with applications. Introductory lectures, Universitext, 2nd ed., Springer, Heildelberg, 2014, xviii+455 pp. | DOI | MR | Zbl

[14] J.-F. Le Gall, Spatial branching processes, random snakes and partial differential equations, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 1999, x+163 pp. | DOI | MR | Zbl

[15] Zenghu Li, “Convolution semigroups associated with measure-valued branching processes”, Chinese Sci. Bull., 41:4 (1996), 276–280 | MR | Zbl

[16] Zeng-Hu Li, “Immigration structures associated with Dawson–Watanabe superprocesses”, Stochastic Process. Appl., 62:1 (1996), 73–86 | DOI | MR | Zbl

[17] Zeng-Hu Li, “Skew convolution semigroups and related immigration processes”, Theory Probab. Appl., 46:2 (2003), 274–297 | DOI | DOI | MR | Zbl

[18] Zenghu Li, Measure-valued branching Markov processes, Probab. Appl. (N. Y.), Springer, Heidelberg, 2011, xii+350 pp. | DOI | MR | Zbl

[19] Zenghu Li, “Continuous-state branching processes with immigration”, From probability to finance, Math. Lect. Peking Univ., Springer, Singapore, 2020, 1–69 | DOI | Zbl

[20] Zenghu Li, Chunhua Ma, “Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model”, Stochastic Process. Appl., 125:8 (2015), 3196–3233 | DOI | MR | Zbl

[21] M. Loève, Probability theory. I, Grad. Texts in Math., 45, 4th ed., Springer-Verlag, New York–Heidelberg, 1977, xvii+425 pp. | DOI | MR | Zbl

[22] M. A. Pinsky, “Limit theorems for continuous state branching processes with immigration”, Bull. Amer. Math. Soc., 78:2 (1972), 242–244 | DOI | MR | Zbl

[23] Yu. M. Rhyzhov, A. V. Skorokhod, “Homogeneous branching processes with a finite number of types and continuous varying mass”, Theory Probab. Appl., 15:4 (1970), 704–707 | DOI | MR | Zbl

[24] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, xii+486 pp. | MR | Zbl

[25] K. Sato, M. Yamazato, “Operator-selfdecomposable distributions as limit distributions of processes of Ornstein–Uhlenbeck type”, Stochastic Process. Appl., 17:1 (1984), 73–100 | DOI | MR | Zbl

[26] R. L. Schilling, Jian Wang, “On the coupling property and the Liouville theorem for Ornstein–Uhlenbeck processes”, J. Evol. Equ., 12:1 (2012), 119–140 | DOI | MR | Zbl

[27] W. Stannat, “Spectral properties for a class of continuous state branching processes with immigration”, J. Funct. Anal., 201:1 (2003), 185–227 | DOI | MR | Zbl

[28] W. Stannat, “On transition semigroups of $(A,\Psi)$-superprocesses with immigration”, Ann. Probab., 31:3 (2003), 1377–1412 | DOI | MR | Zbl

[29] F. W. Steutel, K. van Harn, “Discrete analogues of self-decomposability and stability”, Ann. Probab., 7:5 (1979), 893–899 | DOI | MR | Zbl

[30] K. van Harn, F. W. Steutel, W. Vervaat, “Self-decomposable discrete distributions and branching processes”, Z. Wahrsch. Verw. Gebiete, 61:1 (1982), 97–118 | DOI | MR | Zbl

[31] Feng-Yu Wang, “Coupling for Ornstein–Uhlenbeck processes with jumps”, Bernoulli, 17:4 (2011), 1136–1158 | DOI | MR | Zbl

[32] Feng-Yu Wang, “Gradient estimate for Ornstein–Uhlenbeck jump processes”, Stochastic Process. Appl., 121:3 (2011), 466–478 | DOI | MR | Zbl

[33] Feng-Yu Wang, Jian Wang, “Coupling and strong Feller for jump processes on Banach spaces”, Stochastic Process. Appl., 123:5 (2013), 1588–1615 | DOI | MR | Zbl

[34] Jian Wang, “On the exponential ergodicity of Lévy-driven Ornstein–Uhlenbeck processes”, J. Appl. Probab., 49:4 (2012), 990–1004 | DOI | MR | Zbl

[35] S. Watanabe, “On two dimensional Markov processes with branching property”, Trans. Amer. Math. Soc., 136 (1969), 447–466 | DOI | MR | Zbl