Mots-clés : immigration
@article{TVP_2021_66_2_a6,
author = {Z. Li},
title = {Ergodicities and exponential ergodicities of {Dawson{\textendash}Watanabe} type processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {342--368},
year = {2021},
volume = {66},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a6/}
}
Z. Li. Ergodicities and exponential ergodicities of Dawson–Watanabe type processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 342-368. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a6/
[1] Mu-Fa Chen, From Markov chains to non-equilibrium particle systems, 2nd ed., World Sci. Publ., River Edge, NJ, 2004, xii+597 pp. | DOI | MR | Zbl
[2] Mu-Fa Chen, Eigenvalues, inequalities and ergodic theory, Probab. Appl. (N. Y.), Springer-Verlag London, Ltd., London, 2005, xiv+228 pp. | DOI | MR | Zbl
[3] D. A. Dawson, “Measure-valued Markov processes”, Ecole d'Eté de Probabilités de Saint-Flour XXI–1991, Lecture Notes in Math., 1541, Springer, Berlin, 1993, 1–260 | DOI | MR | Zbl
[4] D. Duffie, D. Filipović, W. Schachermayer, “Affine processes and applications in finance”, Ann. Appl. Probab., 13:3 (2003), 984–1053 | DOI | MR | Zbl
[5] E. B. Dynkin, “Three classes of infinite-dimensional diffusions”, J. Funct. Anal., 86:1 (1989), 75–110 | DOI | MR | Zbl
[6] E. B. Dynkin, An introduction to branching measure-valued processes, CRM Monogr. Ser., 6, Amer. Math. Soc., Providence, RI, 1994, x+134 pp. | DOI | MR | Zbl
[7] A. M. Etheridge, An introduction to superprocesses, Univ. Lecture Ser., 20, Amer. Math. Soc., Providence, RI, 2000, xii+187 pp. | DOI | MR | Zbl
[8] M. Friesen, Long-time behavior for subcritical measure-valued branching processes with immigration, 2019, arXiv: 1903.05546
[9] M. Friesen, Peng Jin, B. Rüdiger, “Stochastic equation and exponential ergodicity in Wasserstein distances for affine processes”, Ann. Appl. Probab., 30:5 (2020), 2165–2195 | DOI | MR
[10] R. K. Getoor, J. Glover, “Constructing Markov processes with random times of birth and death”, Seminar on stochastic processes (Charlottesville, VA, 1986), Progr. Probab. Statist., 13, Birkhäuser Boston, Boston, MA, 1987, 35–69 | DOI | MR | Zbl
[11] Peng Jin, J. Kremer, B. Rüdiger, “Existence of limiting distribution for affine processes”, J. Math. Anal. Appl., 486:2 (2020), 123912, 31 pp. | DOI | MR | Zbl
[12] M. Keller-Ressel, A. Mijatović, “On the limit distributions of continuous-state branching processes with immigration”, Stochastic Process. Appl., 122:6 (2012), 2329–2345 | DOI | MR | Zbl
[13] A. E. Kyprianou, Fluctuations of Lévy processes with applications. Introductory lectures, Universitext, 2nd ed., Springer, Heildelberg, 2014, xviii+455 pp. | DOI | MR | Zbl
[14] J.-F. Le Gall, Spatial branching processes, random snakes and partial differential equations, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 1999, x+163 pp. | DOI | MR | Zbl
[15] Zenghu Li, “Convolution semigroups associated with measure-valued branching processes”, Chinese Sci. Bull., 41:4 (1996), 276–280 | MR | Zbl
[16] Zeng-Hu Li, “Immigration structures associated with Dawson–Watanabe superprocesses”, Stochastic Process. Appl., 62:1 (1996), 73–86 | DOI | MR | Zbl
[17] Zeng-Hu Li, “Skew convolution semigroups and related immigration processes”, Theory Probab. Appl., 46:2 (2003), 274–297 | DOI | DOI | MR | Zbl
[18] Zenghu Li, Measure-valued branching Markov processes, Probab. Appl. (N. Y.), Springer, Heidelberg, 2011, xii+350 pp. | DOI | MR | Zbl
[19] Zenghu Li, “Continuous-state branching processes with immigration”, From probability to finance, Math. Lect. Peking Univ., Springer, Singapore, 2020, 1–69 | DOI | Zbl
[20] Zenghu Li, Chunhua Ma, “Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model”, Stochastic Process. Appl., 125:8 (2015), 3196–3233 | DOI | MR | Zbl
[21] M. Loève, Probability theory. I, Grad. Texts in Math., 45, 4th ed., Springer-Verlag, New York–Heidelberg, 1977, xvii+425 pp. | DOI | MR | Zbl
[22] M. A. Pinsky, “Limit theorems for continuous state branching processes with immigration”, Bull. Amer. Math. Soc., 78:2 (1972), 242–244 | DOI | MR | Zbl
[23] Yu. M. Rhyzhov, A. V. Skorokhod, “Homogeneous branching processes with a finite number of types and continuous varying mass”, Theory Probab. Appl., 15:4 (1970), 704–707 | DOI | MR | Zbl
[24] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, xii+486 pp. | MR | Zbl
[25] K. Sato, M. Yamazato, “Operator-selfdecomposable distributions as limit distributions of processes of Ornstein–Uhlenbeck type”, Stochastic Process. Appl., 17:1 (1984), 73–100 | DOI | MR | Zbl
[26] R. L. Schilling, Jian Wang, “On the coupling property and the Liouville theorem for Ornstein–Uhlenbeck processes”, J. Evol. Equ., 12:1 (2012), 119–140 | DOI | MR | Zbl
[27] W. Stannat, “Spectral properties for a class of continuous state branching processes with immigration”, J. Funct. Anal., 201:1 (2003), 185–227 | DOI | MR | Zbl
[28] W. Stannat, “On transition semigroups of $(A,\Psi)$-superprocesses with immigration”, Ann. Probab., 31:3 (2003), 1377–1412 | DOI | MR | Zbl
[29] F. W. Steutel, K. van Harn, “Discrete analogues of self-decomposability and stability”, Ann. Probab., 7:5 (1979), 893–899 | DOI | MR | Zbl
[30] K. van Harn, F. W. Steutel, W. Vervaat, “Self-decomposable discrete distributions and branching processes”, Z. Wahrsch. Verw. Gebiete, 61:1 (1982), 97–118 | DOI | MR | Zbl
[31] Feng-Yu Wang, “Coupling for Ornstein–Uhlenbeck processes with jumps”, Bernoulli, 17:4 (2011), 1136–1158 | DOI | MR | Zbl
[32] Feng-Yu Wang, “Gradient estimate for Ornstein–Uhlenbeck jump processes”, Stochastic Process. Appl., 121:3 (2011), 466–478 | DOI | MR | Zbl
[33] Feng-Yu Wang, Jian Wang, “Coupling and strong Feller for jump processes on Banach spaces”, Stochastic Process. Appl., 123:5 (2013), 1588–1615 | DOI | MR | Zbl
[34] Jian Wang, “On the exponential ergodicity of Lévy-driven Ornstein–Uhlenbeck processes”, J. Appl. Probab., 49:4 (2012), 990–1004 | DOI | MR | Zbl
[35] S. Watanabe, “On two dimensional Markov processes with branching property”, Trans. Amer. Math. Soc., 136 (1969), 447–466 | DOI | MR | Zbl