@article{TVP_2021_66_2_a5,
author = {M. Janisch},
title = {Kolmogorov's strong law of large numbers holds for pairwise uncorrelated random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {327--341},
year = {2021},
volume = {66},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a5/}
}
M. Janisch. Kolmogorov's strong law of large numbers holds for pairwise uncorrelated random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 327-341. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a5/
[1] T. K. Chandra, A. Goswami, “Cesáro uniform integrability and the strong law of large numbers”, Sankhyā Ser. A, 54:2 (1992), 215–231 | MR | Zbl
[2] S. Csörgő, K. Tandori, V. Totik, “On the strong law of large numbers for pairwise independent random variables”, Acta Math. Hungar., 42:3-4 (1983), 319–330 | DOI | MR | Zbl
[3] N. Etemadi, “An elementary proof of the strong law of large numbers”, Z. Wahrsch. Verw. Gebiete, 55:1 (1981), 119–122 | DOI | MR | Zbl
[4] V. Korchevsky, “On the strong law of large numbers for sequences of pairwise independent random variables”, J. Math. Sci. (N. Y.), 244:5 (2020), 805–810 | DOI | MR | Zbl
[5] A. N. Shiryaev, Probability–2, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2019, x+348 pp. | DOI | MR | Zbl
[6] J. M. Stoyanov, Counterexamples in probability, 3rd rev. ed., Dover Publications, Inc., Mineola, NY, 2013, xxx+368 pp. | MR | Zbl | Zbl