Mots-clés : diffusion equations
@article{TVP_2021_66_2_a4,
author = {B. D. O. Anderson and A. N. Bishop and P. Del Moral and C. Palmier},
title = {Backward nonlinear smoothing diffusions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {305--326},
year = {2021},
volume = {66},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a4/}
}
TY - JOUR AU - B. D. O. Anderson AU - A. N. Bishop AU - P. Del Moral AU - C. Palmier TI - Backward nonlinear smoothing diffusions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 305 EP - 326 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a4/ LA - ru ID - TVP_2021_66_2_a4 ER -
B. D. O. Anderson; A. N. Bishop; P. Del Moral; C. Palmier. Backward nonlinear smoothing diffusions. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 305-326. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a4/
[1] B. D. O. Anderson, “Fixed interval smoothing for nonlinear continuous time systems”, Information and Control, 20:3 (1972), 294–300 | DOI | MR | Zbl
[2] B. D. O. Anderson, “Reverse-time diffusion equation models”, Stochastic Process. Appl., 12:3 (1982), 313–326 | DOI | MR | Zbl
[3] B. D. O. Anderson, I. B. Rhodes, “Smoothing algorithms for nonlinear finite-dimensional systems”, Stochastics, 9:1-2 (1983), 139–165 | DOI | MR | Zbl
[4] M. Arnaudon, P. Del Moral, “A variational approach to nonlinear and interacting diffusions”, Stoch. Anal. Appl., 37:5 (2019), 717–748 | DOI | MR | Zbl
[5] A. Bain, D. Crisan, Fundamentals of stochastic filtering, Stoch. Model. Appl. Probab., 60, Springer, New York, 2009, xiv+390 pp. | DOI | MR | Zbl
[6] A. N. Bishop, P. Del Moral, “On the stability of Kalman–Bucy diffusion processes”, SIAM J. Control Optim., 55:6 (2017), 4015–4047 ; arXiv: 1610.04686 | DOI | MR | Zbl
[7] A. E. Bryson, M. Frazier, “Smoothing for linear and nonlinear dynamic systems”, Proceedings of the optimum system synthesis conference, Tech. doc. rep. No. ASD-TDR-63-119 (ASD, 1962), Aeronautical Systems Div., Wright-Patterson AFB, Ohio, 1963, 353–364
[8] P. Cattiaux, L. Mesnager, “Hypoelliptic non-homogeneous diffusions”, Probab. Theory Related Fields, 123:4 (2002), 453–483 | DOI | MR | Zbl
[9] Wei-Liang Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | DOI | MR | Zbl
[10] T. Cass, M. Clark, D. Crisan, “The filtering equations revisited”, Stochastic analysis and applications 2014, Springer Proc. Math. Stat., 100, Springer, Cham, 2014, 129–162 | DOI | MR | Zbl
[11] G. Da Prato, J.-L. Menaldi, L. Tubaro, “Some results of backward Itô formula”, Stoch. Anal. Appl., 25:3 (2007), 679–703 | DOI | MR | Zbl
[12] G. Da Prato, “Some remarks about backward Itô formula and applications”, Stoch. Anal. Appl., 16:6 (1998), 993–1003 | DOI | MR | Zbl
[13] P. Del Moral, S. Penev, Stochastic processes. From applications to theory, Chapman Hall/CRC Texts Stat. Sci. Ser., CRC Press, Boca Raton, FL, 2017, xlviii+865 pp. | MR | Zbl
[14] P. Del Moral, S. S. Singh, A forward-backward stochastic analysis of diffusion flows, 2019, arXiv: 1906.09145v1
[15] U. G. Haussmann, E. Pardoux, “Time reversal of diffusions”, Ann. Probab., 14:4 (1986), 1188–1205 | DOI | MR | Zbl
[16] L. Hörmander, “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl
[17] T. Kailath, P. Frost, “An innovations approach to least-squares estimation. Part II. Linear smoothing in additive white noise”, IEEE Trans. Automat. Control, AC-13:6 (1968), 655–660 | DOI | MR | Zbl
[18] G. Kallianpur, C. Striebel, “Estimation of stochastic systems: arbitrary system process with additive white noise observation errors”, Ann. Math. Statist., 39:3 (1968), 785–801 | DOI | MR | Zbl
[19] G. Kallianpur, C. Striebel, “Stochastic differential equations occurring in the estimation of continuous parameter stochastic processes”, Teoriya veroyatn. i ee primen., 14:4 (1969), 597–622 | MR | Zbl
[20] N. V. Krylov, B. L. Rozovskii, “On the Cauchy problem for linear stochastic partial differential equations”, Math. USSR-Izv., 11:6 (1977), 1267–1284 | DOI | MR | Zbl
[21] N. V. Krylov, B. L. Rozovskii, “On conditional distributions of diffusion processes”, Math. USSR-Izv., 12:2 (1978), 336–356 | DOI | MR | Zbl
[22] N. V. Krylov, B. L. Rozovskiĭ, “On the first integrals and Liouville equations for diffusion processes”, Stochastic differential systems (Visegrád, 1980), Lect. Notes Control Inf. Sci., 36, Springer, Berlin–New York, 1981, 117–125 | DOI | MR | Zbl
[23] H. Kunita, “Asymptotic behavior of the nonlinear filtering errors of Markov processes”, J. Multivariate Anal., 1:4 (1971), 365–393 | DOI | MR | Zbl
[24] H. Kunita, “Stochastic partial differential equations connected with non-linear filtering”, Nonlinear filtering and stochastic control (Cortona, 1981), Lecture Notes in Math., 972, Springer, Berlin, 1982, 100–169 | DOI | MR | Zbl
[25] H. Kunita, “On backward stochastic differential equations”, Stochastics, 6:3-4 (1982), 293–313 | DOI | MR | Zbl
[26] H. Kunita, “First order stochastic partial differential equations”, Stochastic analysis (Katata/Kyoto, 1982), North-Holland Math. Library, 32, North-Holland, Amsterdam, 1984, 249–269 | DOI | MR | Zbl
[27] H. J. Kushner, “On the differential equations satisfied by conditional probability densities of Markov processes, with applications”, J. SIAM Control Ser. A, 2:1 (1964), 106–119 | DOI | MR | Zbl
[28] C. T. Leondes, J. B. Peller, E. B. Stear, “Nonlinear smoothing theory”, IEEE Trans. Syst. Sci. Cybern., 6:1 (1970), 63–71 | DOI | MR | Zbl
[29] J. S. Meditch, “A survey of data smoothing for linear and nonlinear dynamic systems”, Automatica J. IFAC, 9:2 (1973), 151–162 | DOI | MR | Zbl
[30] D. Michel, “Régularité des lois conditionnelles en théorie du filtrage non-linéaire et calcul des variations stochastique”, J. Functional Analysis, 41:1 (1981), 8–36 | DOI | MR | Zbl
[31] A. Millet, D. Nualart, M. Sanz, “Integration by parts and time reversal for diffusion processes”, Ann. Probab., 17:1 (1989), 208–238 | DOI | MR | Zbl
[32] E. Pardoux, Equations aux dérivées partielles stochastiques non linéaires monotones, Ph.D. thesis, Univ. Paris XI, Orsay, 1975
[33] E. Pardoux, “Stochastic partial differential equations and filtering of diffusion processes”, Stochastics, 3:2 (1979), 127–167 | DOI | MR | Zbl
[34] E. Pardoux, “Non-linear filtering, prediction and smoothing”, Stochastic systems: the mathematics of filtering and identijication and applications (Les Arcs, 1980), Nato Sci. Ser. C, 78, Reidel, Dordrecht, 1981, 529–557 | DOI
[35] E. Pardoux, “Équations du filtrage non linéaire de la prédiction et du lissage”, Stochastics, 6:3-4 (1982), 193–231 | DOI | MR | Zbl
[36] E. Pardoux, S. G. Peng, “Adapted solution of a backward stochastic differential equation”, Systems Control Lett., 14:1 (1990), 55–61 | DOI | MR | Zbl
[37] E. Pardoux, P. Protter, “A two-sided stochastic integral and its calculus”, Probab. Theory Related Fields, 76:1 (1987), 15–49 | DOI | MR | Zbl
[38] H. E. Rauch, F. Tung, C. T. Striebel, “Maximum likelihood estimates of linear dynamic systems”, AIAA J., 3:8 (1965), 1445–1450 | DOI | MR
[39] P. K. Rashevskii, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uch. zap. Mosk. gos. ped. in-ta im. K. Libknekhta. Ser. fiz.-mat., 3:2 (1938), 83–94
[40] M. Rutkowski, “A simple proof for the Kalman–Bucy smoothed estimate formula”, Statist. Probab. Lett., 17:5 (1993), 377–385 | DOI | MR | Zbl
[41] J. M. Steele, Stochastic calculus and financial applications, Appl. Math. (N. Y.), 45, corr. reprint of the 1st ed., Springer-Verlag, New York, 2012, x+302 pp. | DOI | MR | Zbl
[42] A. Yu. Veretennikov, “On backward filtering equations for SDE systems (direct approach)”, Stochastic partial differential equations (Edinburgh, 1994), London Math. Soc. Lecture Note Ser., 216, Cambridge Univ. Press, Cambridge, 1995, 304–311 | DOI | MR | Zbl
[43] Tao Yang, P. G. Mehta, S. P. Meyn, “Feedback particle filter”, IEEE Trans. Automat. Control, 58:10 (2013), 2465–2480 | DOI | MR | Zbl
[44] Tao Yang, R. S. Laugesen, P. G. Mehta, S. P. Meyn, “Multivariable feedback particle filter”, Automatica J. IFAC, 71 (2016), 10–23 | DOI | MR | Zbl
[45] M. Zakai, “On the optimal filtering of diffusion processes”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 11:3 (1969), 230–243 | DOI | MR | Zbl