@article{TVP_2021_66_2_a3,
author = {V. G. Zadorozhniy},
title = {The expectation of a~solution of a~linear system of differential equations with random coefficients},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {284--304},
year = {2021},
volume = {66},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a3/}
}
TY - JOUR AU - V. G. Zadorozhniy TI - The expectation of a solution of a linear system of differential equations with random coefficients JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 284 EP - 304 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a3/ LA - ru ID - TVP_2021_66_2_a3 ER -
V. G. Zadorozhniy. The expectation of a solution of a linear system of differential equations with random coefficients. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 284-304. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a3/
[1] A. N. Shiryaev, “Part 1. Facts. Models”, Essentials of stochastic finance. Facts, models, theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 1–379 | DOI | MR | Zbl
[2] A. N. Shiryaev, “Part 2. Theory”, Essentials of stochastic finance. Facts, models, theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 382–802 | DOI | MR | Zbl
[3] V. I. Tikhonov, Stokhasticheskaya radiotekhnika, Sov. radio, M., 1966, 678 pp.
[4] G. Adomian, Stochastic systems, Math. Sci. Engrg., 169, Academic Press, Inc., Orlando, FL, 1983, xvii+331 pp. | MR | MR | Zbl
[5] A. S. Monin, A. M. Yaglom, Statistical fluid mechanics: mechanics of turbulence, v. I, Reprint. from the 1971 ed., Dover Publications, Inc., Mineola, NY, 2007, xii+769 pp. | MR | Zbl | Zbl
[6] A. S. Monin, A. M. Yaglom, Statistical fluid mechanics: mechanics of turbulence, v. II, Reprint. from the 1975 ed., Dover Publications, Inc., Mineola, NY, 2007, xii+874 pp. | MR | Zbl | Zbl
[7] V. I. Klyatskin, Osnovy stokhasticheskogo estestvoznaniya, Sinergetika: ot proshlogo k buduschemu, 81, URSS, M., 2018, 232 pp.
[8] V. G. Zadorozhnii, Metody variatsionnogo analiza, RKhD, M.–Izhevsk, 2006, 316 pp.
[9] V. G. Zadorozhniy, “Stabilization of linear systems by a multiplicative random noise”, Differ. Equ., 54:6 (2018), 728–747 | DOI | MR | Zbl
[10] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1955, xii+429 pp. | MR | Zbl
[11] R. Z. Has'minskiĭ, Stochastic stability of differential equations, Monographs Textbooks Mech. Solids Fluids: Mech. Anal., 7, Sijthoff Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, xvi+344 pp. | MR | MR | Zbl | Zbl
[12] I. M. Gel'fand, N. Ya. Vilenkin, Generalized functions, v. 4, Applications of harmonic analysis, Academic Press, New York–London, 1964, xiv+384 pp. | MR | MR | Zbl | Zbl
[13] V. G. Zadorozhnii, “A differential equation in a Banach space that contains a variational derivative”, Siberian Math. J., 33:2 (1992), 247–258 | DOI | MR | Zbl
[14] V. G. Zadorozhniĭ, “Moment functions of the solution of the Cauchy problem for the stochastic heat equation”, Dokl. Math., 59:1 (1999), 107–109 | MR | Zbl
[15] V. G. Zadorozhnii, M. A. Konovalova, “Multiplikativno vozmuschennoe sluchainym shumom differentsialnoe uravnenie v banakhovom prostranstve”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 4, RUDN, M., 2017, 599–614 | DOI | MR