The expectation of a solution of a linear system of differential equations with random coefficients
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 284-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a linear inhomogeneous system of differential equations of special form with three random coefficients defined by characteristic functionals. Operator functions generated by the functionals are introduced. The problem of finding the expectation of a solution of the Cauchy problem is reduced to the study of an auxiliary deterministic system of differential equations involving ordinary and variational derivatives. The solution of the resulting equation is written in terms of operator functions generated by the functionals. We derive explicit formulas for the expectation of the solution with uniformly distributed random coefficients, random Laplace coefficients, and Gaussian random coefficients.
Keywords: equations with random coefficients, variational derivative, stability in the mean, equations with variational derivatives, expectation.
@article{TVP_2021_66_2_a3,
     author = {V. G. Zadorozhniy},
     title = {The expectation of a~solution of a~linear system of differential equations with random coefficients},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {284--304},
     year = {2021},
     volume = {66},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a3/}
}
TY  - JOUR
AU  - V. G. Zadorozhniy
TI  - The expectation of a solution of a linear system of differential equations with random coefficients
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 284
EP  - 304
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a3/
LA  - ru
ID  - TVP_2021_66_2_a3
ER  - 
%0 Journal Article
%A V. G. Zadorozhniy
%T The expectation of a solution of a linear system of differential equations with random coefficients
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 284-304
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a3/
%G ru
%F TVP_2021_66_2_a3
V. G. Zadorozhniy. The expectation of a solution of a linear system of differential equations with random coefficients. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 284-304. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a3/

[1] A. N. Shiryaev, “Part 1. Facts. Models”, Essentials of stochastic finance. Facts, models, theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 1–379 | DOI | MR | Zbl

[2] A. N. Shiryaev, “Part 2. Theory”, Essentials of stochastic finance. Facts, models, theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 382–802 | DOI | MR | Zbl

[3] V. I. Tikhonov, Stokhasticheskaya radiotekhnika, Sov. radio, M., 1966, 678 pp.

[4] G. Adomian, Stochastic systems, Math. Sci. Engrg., 169, Academic Press, Inc., Orlando, FL, 1983, xvii+331 pp. | MR | MR | Zbl

[5] A. S. Monin, A. M. Yaglom, Statistical fluid mechanics: mechanics of turbulence, v. I, Reprint. from the 1971 ed., Dover Publications, Inc., Mineola, NY, 2007, xii+769 pp. | MR | Zbl | Zbl

[6] A. S. Monin, A. M. Yaglom, Statistical fluid mechanics: mechanics of turbulence, v. II, Reprint. from the 1975 ed., Dover Publications, Inc., Mineola, NY, 2007, xii+874 pp. | MR | Zbl | Zbl

[7] V. I. Klyatskin, Osnovy stokhasticheskogo estestvoznaniya, Sinergetika: ot proshlogo k buduschemu, 81, URSS, M., 2018, 232 pp.

[8] V. G. Zadorozhnii, Metody variatsionnogo analiza, RKhD, M.–Izhevsk, 2006, 316 pp.

[9] V. G. Zadorozhniy, “Stabilization of linear systems by a multiplicative random noise”, Differ. Equ., 54:6 (2018), 728–747 | DOI | MR | Zbl

[10] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1955, xii+429 pp. | MR | Zbl

[11] R. Z. Has'minskiĭ, Stochastic stability of differential equations, Monographs Textbooks Mech. Solids Fluids: Mech. Anal., 7, Sijthoff Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, xvi+344 pp. | MR | MR | Zbl | Zbl

[12] I. M. Gel'fand, N. Ya. Vilenkin, Generalized functions, v. 4, Applications of harmonic analysis, Academic Press, New York–London, 1964, xiv+384 pp. | MR | MR | Zbl | Zbl

[13] V. G. Zadorozhnii, “A differential equation in a Banach space that contains a variational derivative”, Siberian Math. J., 33:2 (1992), 247–258 | DOI | MR | Zbl

[14] V. G. Zadorozhniĭ, “Moment functions of the solution of the Cauchy problem for the stochastic heat equation”, Dokl. Math., 59:1 (1999), 107–109 | MR | Zbl

[15] V. G. Zadorozhnii, M. A. Konovalova, “Multiplikativno vozmuschennoe sluchainym shumom differentsialnoe uravnenie v banakhovom prostranstve”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 4, RUDN, M., 2017, 599–614 | DOI | MR