Large deviations for a terminating compound renewal process
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 261-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(\xi(i),\eta(i)) \in \mathbf{R}^{d+1}$, $i \in \mathbf{N}$, be independent and identically distributed random vectors, let $\xi(i)\in \mathbf{R}^d$ be random vectors, let $\eta(i)$ be improper nonnegative random variables, and let $\mathbf{P}(\eta(i) = +\infty)\in(0,1)$. It is assumed that the distribution of the vector $(\xi(1),\eta(1))$ subject to $\{\eta(1)<+\infty\}$ satisfies the Cramér condition. By a terminating compound renewal process we mean the process $Z_T =\sum_{k=1}^{N_T}\xi(k)$, where $N_T = \max\{k \in \mathbf{N}\colon \eta(1)+\dots+\eta(k) \le T\}$ is the renewal process corresponding to improper random variables $\eta(1), \eta(2), \dotsc$. We find precise asymptotics of the probabilities $\mathbf{P}\bigl(Z_T\in I_{\Delta_T}(x)\bigr)$ and $\mathbf{P}(Z_T = x)$ in the nonlattice and strongly arithmetic cases, respectively; here $I_{\Delta_T}(x)=\{y\in\mathbf{R}^d\colon x_j\le y_j < x_j+\Delta_T$, $j=1,\dots,d\}$, and $\Delta_T$ is a positive function converging sufficiently slowly to zero.
Keywords: compound renewal process, large deviations, terminating renewal processes.
Mots-clés : the Cramér condition
@article{TVP_2021_66_2_a2,
     author = {G. A. Bakay},
     title = {Large deviations for a~terminating compound renewal process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {261--283},
     year = {2021},
     volume = {66},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/}
}
TY  - JOUR
AU  - G. A. Bakay
TI  - Large deviations for a terminating compound renewal process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 261
EP  - 283
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/
LA  - ru
ID  - TVP_2021_66_2_a2
ER  - 
%0 Journal Article
%A G. A. Bakay
%T Large deviations for a terminating compound renewal process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 261-283
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/
%G ru
%F TVP_2021_66_2_a2
G. A. Bakay. Large deviations for a terminating compound renewal process. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 261-283. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/

[1] A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. I”, Siberian Math. J., 59:3 (2018), 383–402 | DOI | DOI | MR | Zbl

[2] A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. II”, Siberian Math. J., 59:4 (2018), 578–597 | DOI | DOI | MR | Zbl

[3] A. A. Mogulskii, E. I. Prokopenko, “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. I”, Sib. elektron. matem. izv., 15 (2018), 475–502 | DOI | MR | Zbl

[4] A. A. Mogulskii, E. I. Prokopenko, “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. II”, Sib. elektron. matem. izv., 15 (2018), 503–527 | DOI | MR | Zbl

[5] A. A. Mogulskii, E. I. Prokopenko, “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. III”, Sib. elektron. matem. izv., 15 (2018), 528–553 | DOI | MR | Zbl

[6] A. A. Mogulskii, “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. matem. izv., 16 (2019), 21–41 | DOI | MR | Zbl

[7] A. A. Mogulskii, E. I. Prokopenko, “Lokalnye teoremy dlya arifmeticheskikh mnogomernykh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Matem. tr., 22:2 (2019), 106–133 | DOI

[8] G. A. Bakay, A. V. Shklyaev, “Large deviations of generalized renewal process”, Discrete Math. Appl., 30:4 (2020), 215–241 | DOI | DOI | MR | Zbl

[9] A. A. Borovkov, Asymptotic analysis of random walks. Light-tailed distributions, Encyclopedia Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020, xvi+420 pp. | DOI | Zbl | Zbl

[10] A. A. Borovkov, A. A. Mogul'skii, “On large and superlarge deviations of sums of independent random vectors under the Cramér's condition. I”, Theory Probab. Appl., 51:2 (2007), 227–255 | DOI | DOI | MR | Zbl

[11] A. A. Borovkov, A. A. Mogul'skii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Siberian Math. J., 37:4 (1996), 647–682 | DOI | MR | Zbl