Large deviations for a~terminating compound renewal process
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 261-283

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\xi(i),\eta(i)) \in \mathbf{R}^{d+1}$, $i \in \mathbf{N}$, be independent and identically distributed random vectors, let $\xi(i)\in \mathbf{R}^d$ be random vectors, let $\eta(i)$ be improper nonnegative random variables, and let $\mathbf{P}(\eta(i) = +\infty)\in(0,1)$. It is assumed that the distribution of the vector $(\xi(1),\eta(1))$ subject to $\{\eta(1)+\infty\}$ satisfies the Cramér condition. By a terminating compound renewal process we mean the process $Z_T =\sum_{k=1}^{N_T}\xi(k)$, where $N_T = \max\{k \in \mathbf{N}\colon \eta(1)+\dots+\eta(k) \le T\}$ is the renewal process corresponding to improper random variables $\eta(1), \eta(2), \dotsc$. We find precise asymptotics of the probabilities $\mathbf{P}\bigl(Z_T\in I_{\Delta_T}(x)\bigr)$ and $\mathbf{P}(Z_T = x)$ in the nonlattice and strongly arithmetic cases, respectively; here $I_{\Delta_T}(x)=\{y\in\mathbf{R}^d\colon x_j\le y_j x_j+\Delta_T$, $j=1,\dots,d\}$, and $\Delta_T$ is a positive function converging sufficiently slowly to zero.
Keywords: compound renewal process, large deviations, the Cramér condition, terminating renewal processes.
@article{TVP_2021_66_2_a2,
     author = {G. A. Bakay},
     title = {Large deviations for a~terminating compound renewal process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {261--283},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/}
}
TY  - JOUR
AU  - G. A. Bakay
TI  - Large deviations for a~terminating compound renewal process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 261
EP  - 283
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/
LA  - ru
ID  - TVP_2021_66_2_a2
ER  - 
%0 Journal Article
%A G. A. Bakay
%T Large deviations for a~terminating compound renewal process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 261-283
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/
%G ru
%F TVP_2021_66_2_a2
G. A. Bakay. Large deviations for a~terminating compound renewal process. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 261-283. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/