Mots-clés : the Cramér condition
@article{TVP_2021_66_2_a2,
author = {G. A. Bakay},
title = {Large deviations for a~terminating compound renewal process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {261--283},
year = {2021},
volume = {66},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/}
}
G. A. Bakay. Large deviations for a terminating compound renewal process. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 261-283. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/
[1] A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. I”, Siberian Math. J., 59:3 (2018), 383–402 | DOI | DOI | MR | Zbl
[2] A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. II”, Siberian Math. J., 59:4 (2018), 578–597 | DOI | DOI | MR | Zbl
[3] A. A. Mogulskii, E. I. Prokopenko, “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. I”, Sib. elektron. matem. izv., 15 (2018), 475–502 | DOI | MR | Zbl
[4] A. A. Mogulskii, E. I. Prokopenko, “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. II”, Sib. elektron. matem. izv., 15 (2018), 503–527 | DOI | MR | Zbl
[5] A. A. Mogulskii, E. I. Prokopenko, “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. III”, Sib. elektron. matem. izv., 15 (2018), 528–553 | DOI | MR | Zbl
[6] A. A. Mogulskii, “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. matem. izv., 16 (2019), 21–41 | DOI | MR | Zbl
[7] A. A. Mogulskii, E. I. Prokopenko, “Lokalnye teoremy dlya arifmeticheskikh mnogomernykh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Matem. tr., 22:2 (2019), 106–133 | DOI
[8] G. A. Bakay, A. V. Shklyaev, “Large deviations of generalized renewal process”, Discrete Math. Appl., 30:4 (2020), 215–241 | DOI | DOI | MR | Zbl
[9] A. A. Borovkov, Asymptotic analysis of random walks. Light-tailed distributions, Encyclopedia Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020, xvi+420 pp. | DOI | Zbl | Zbl
[10] A. A. Borovkov, A. A. Mogul'skii, “On large and superlarge deviations of sums of independent random vectors under the Cramér's condition. I”, Theory Probab. Appl., 51:2 (2007), 227–255 | DOI | DOI | MR | Zbl
[11] A. A. Borovkov, A. A. Mogul'skii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Siberian Math. J., 37:4 (1996), 647–682 | DOI | MR | Zbl