Large deviations for a~terminating compound renewal process
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 261-283
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(\xi(i),\eta(i)) \in \mathbf{R}^{d+1}$, $i \in \mathbf{N}$, be
independent and identically distributed random vectors, let $\xi(i)\in
\mathbf{R}^d$ be random vectors, let $\eta(i)$ be improper nonnegative random
variables, and let $\mathbf{P}(\eta(i) = +\infty)\in(0,1)$. It is assumed
that the distribution of the vector $(\xi(1),\eta(1))$ subject to
$\{\eta(1)+\infty\}$ satisfies the Cramér condition. By a terminating
compound renewal process we mean the process $Z_T =\sum_{k=1}^{N_T}\xi(k)$,
where $N_T = \max\{k \in \mathbf{N}\colon \eta(1)+\dots+\eta(k) \le T\}$ is
the renewal process corresponding to improper random variables $\eta(1),
\eta(2), \dotsc$. We find precise asymptotics of the probabilities
$\mathbf{P}\bigl(Z_T\in I_{\Delta_T}(x)\bigr)$ and $\mathbf{P}(Z_T = x)$
in the nonlattice and strongly arithmetic cases, respectively; here
$I_{\Delta_T}(x)=\{y\in\mathbf{R}^d\colon x_j\le y_j x_j+\Delta_T$,
$j=1,\dots,d\}$, and $\Delta_T$ is a positive function converging sufficiently
slowly to zero.
Keywords:
compound renewal process, large deviations, the Cramér condition, terminating renewal processes.
@article{TVP_2021_66_2_a2,
author = {G. A. Bakay},
title = {Large deviations for a~terminating compound renewal process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {261--283},
publisher = {mathdoc},
volume = {66},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/}
}
G. A. Bakay. Large deviations for a~terminating compound renewal process. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 261-283. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a2/