@article{TVP_2021_66_2_a1,
author = {F. Aurzada and V. Betz and M. A. Lifshits},
title = {Breaking a~chain of interacting {Brownian} particles: {a~Gumbel} limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {231--260},
year = {2021},
volume = {66},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a1/}
}
TY - JOUR AU - F. Aurzada AU - V. Betz AU - M. A. Lifshits TI - Breaking a chain of interacting Brownian particles: a Gumbel limit theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 231 EP - 260 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a1/ LA - ru ID - TVP_2021_66_2_a1 ER -
F. Aurzada; V. Betz; M. A. Lifshits. Breaking a chain of interacting Brownian particles: a Gumbel limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 231-260. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a1/
[1] M. Allman, V. Betz, “Breaking the chain”, Stochastic Process. Appl., 119:8 (2009), 2645–2659 | DOI | MR | Zbl
[2] M. Allman, V. Betz, M. Hairer, “A chain of interacting particles under strain”, Stochastic Process. Appl., 121:9 (2011), 2014–2042 | DOI | MR | Zbl
[3] F. Aurzada, V. Betz, M. Lifshits, Breaking a chain of interacting Brownian particles, 2019, arXiv: 1912.05168
[4] F. Aurzada, V. Betz, M. Lifshits, “Breaking a chain of interacting Brownian particles”, Ann. Appl. Probab. (to appear) https://imstat.org/journals-and-publications/annals-of-applied-probability/annals-of-applied-probability-future-papers
[5] F. Aurzada, V. Betz, M. Lifshits, Universal break law for chains of Brownian particles with nearest neighbour interaction, 2020, arXiv: 2010.07706
[6] A. Bovier, F. den Hollander, Metastability. A potential-theoretic approach, Grundlehren Math. Wiss., 351, Springer, Cham, 2015, xxi+581 pp. | DOI | MR | Zbl
[7] D. S. Donchev, “Exit probability levels of diffusion processes”, Proc. Amer. Math. Soc., 145:5 (2017), 2241–2253 | DOI | MR | Zbl
[8] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren Math. Wiss., 260, 2nd ed., Springer-Verlag, New York, 1998, xii+430 pp. | DOI | MR | MR | Zbl | Zbl
[9] V. A. Malyshev, S. A. Muzychka, “Dynamical phase transition in the simplest molecular chain model”, Theoret. and Math. Phys., 179:1 (2014), 490–499 | DOI | DOI | MR | Zbl
[10] V. A. Malyshev, “One-dimensional mechanical networks and crystals”, Mosc. Math. J., 6:2 (2006), 353–358 | DOI | MR | Zbl
[11] S. A. Muzychka, “Mean exit time for a chain of $N=2,3,4$ oscillators”, Moscow Univ. Math. Bull., 68:4 (2013), 206–210 | DOI | MR | Zbl
[12] S. Noschese, L. Pasquini, L. Reichel, “Tridiagonal Toeplitz matrices: properties and novel applications”, Numer. Linear Algebra Appl., 20:2 (2013), 302–326 | DOI | MR | Zbl
[13] A. A. Novikov, “On estimates and the asymptotic behavior of nonexit probabilities of a Wiener process to a moving boundary”, Math. USSR-Sb., 38:4 (1981), 495–505 | DOI | MR | Zbl
[14] J. Pickands, III, “Upcrossing probabilities for stationary Gaussian processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | MR | Zbl
[15] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl
[16] C. Qualls, H. Watanabe, “Asymptotic properties of Gaussian processes”, Ann. Math. Statist., 43:2 (1972), 580–596 | DOI | MR | Zbl
[17] A. Sain, C. L. Dias, M. Grant, “Rupture of an extended object: a many-body Kramers calculation”, Phys. Rev. E, 74:4 (2006), 046111 | DOI
[18] P. Salminen, “On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary”, Adv. in Appl. Probab., 20:2 (1988), 411–426 | DOI | MR | Zbl