Breaking a~chain of interacting Brownian particles: a~Gumbel limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 231-260
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the behavior of a finite chain of Brownian particles
interacting through a pairwise quadratic potential, with one end of the chain
fixed and the other end pulled away at slow speed, in the limit of slow
speed and small Brownian noise. We study the instant when the chain
“breaks,” that is, the distance between two neighboring particles becomes
larger than a certain limit. In the regime where both the pulling and the
noise significantly influence the behavior of the chain, we prove weak limit
theorems for the break time and the break position.
Keywords:
interacting Brownian particles, stochastic differential equations, Ornstein–Uhlenbeck processes.
@article{TVP_2021_66_2_a1,
author = {F. Aurzada and V. Betz and M. A. Lifshits},
title = {Breaking a~chain of interacting {Brownian} particles: {a~Gumbel} limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {231--260},
publisher = {mathdoc},
volume = {66},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a1/}
}
TY - JOUR AU - F. Aurzada AU - V. Betz AU - M. A. Lifshits TI - Breaking a~chain of interacting Brownian particles: a~Gumbel limit theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 231 EP - 260 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a1/ LA - ru ID - TVP_2021_66_2_a1 ER -
F. Aurzada; V. Betz; M. A. Lifshits. Breaking a~chain of interacting Brownian particles: a~Gumbel limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 231-260. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a1/