@article{TVP_2021_66_1_a8,
author = {J. M. Lee},
title = {The first passage time density of {Brownian} motion and the heat equation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {175--195},
year = {2021},
volume = {66},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a8/}
}
J. M. Lee. The first passage time density of Brownian motion and the heat equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 175-195. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a8/
[1] Jimyeong Lee, “First passage time densities through Hölder curves”, ALEA Lat. Am. J. Probab. Math. Stat., 15:2 (2018), 837–849 | DOI | MR | Zbl
[2] K. Burdzy, Zhen-Qing Chen, J. Sylvester, “The heat equation and reflected Brownian motion in time-dependent domains”, Ann. Probab., 32:1B (2004), 775–804 | DOI | MR | Zbl
[3] S. Kou, Haowen Zhong, “First-passage times of two-dimensional Brownian motion”, Adv. in Appl. Probab., 48:4 (2016), 1045–1060 | DOI | MR | Zbl
[4] M. E. Taylor, Partial differential equations, v. 1, Appl. Math. Sci., 115, Basic theory, 2nd ed., Springer-Verlag, Berlin, 2011, xxii+654 pp. | DOI | MR | Zbl
[5] S. Lang, Fundamentals of differential geometry, Grad. Texts in Math., 191, Springer-Verlag, New York, 1999, xviii+535 pp. | DOI | MR | Zbl
[6] A. Friedman, Partial differential equations of parabolic type, Dover Books on Math., Paperback ed., Dover Publications, Mineola, NY, 2008, 368 pp. | MR | Zbl | Zbl
[7] J. R. Cannon, The one-dimensional heat equation, Encyclopedia Math. Appl., 23, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984, xxv+483 pp. | DOI | MR | Zbl
[8] J. L. Lewis, M. A. M. Murray, The method of layer potentials for the heat equation in time-varying domains, Mem. Amer. Math. Soc., 114, no. 545, Amer. Math. Soc., Providence, RI, 1995, viii+157 pp. | DOI | MR | Zbl