The first passage time density of Brownian motion and the heat equation
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 175-195

Voir la notice de l'article provenant de la source Math-Net.Ru

In [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837–849] it is proved that we can have a continuous first-passage-time density function of one-dimensional standard Brownian motion when the boundary is Hölder continuous with exponent greater than $1/2$. For the purpose of extending the results of [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837–849] to multidimensional domains, we show that there exists a continuous first-passage-time density function of standard $d$-dimensional Brownian motion in moving boundaries in $\mathbb{R}^{d}$, $d\geq 2$, under a $C^{3}$-diffeomorphism. Similarly as in [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837–849], by using a property of local time of standard $d$-dimensional Brownian motion and the heat equation with Dirichlet boundary condition, we find a sufficient condition for the existence of the continuous density function.
Keywords: first passage time, Brownian motion, heat equation, Dirichlet boundary condition.
@article{TVP_2021_66_1_a8,
     author = {J. M. Lee},
     title = {The first passage time density of {Brownian} motion and the heat equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {175--195},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a8/}
}
TY  - JOUR
AU  - J. M. Lee
TI  - The first passage time density of Brownian motion and the heat equation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 175
EP  - 195
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a8/
LA  - ru
ID  - TVP_2021_66_1_a8
ER  - 
%0 Journal Article
%A J. M. Lee
%T The first passage time density of Brownian motion and the heat equation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 175-195
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a8/
%G ru
%F TVP_2021_66_1_a8
J. M. Lee. The first passage time density of Brownian motion and the heat equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 175-195. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a8/