Convergence rate of random geometric sum distributions to the Laplace law
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 149-174

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we modify the Stein method and the auxiliary technique of distributional transformations of random variables. This enables us to estimate the convergence rate of distributions of normalized geometric sums to the Laplace law. For independent summands, the developed approach provides an optimal estimate involving the ideal metric of order 3. New results are also obtained for the Kolmogorov and Kantorovich metrics.
Keywords: Stein's method, geometric random sum, zero-bias transform, equilibrium transform, convergence rate to the Laplace distribution, analogue of the Berry–Esseen inequality, optimal estimate.
@article{TVP_2021_66_1_a7,
     author = {N. A. Slepov},
     title = {Convergence rate of random geometric sum distributions to the {Laplace} law},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {149--174},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a7/}
}
TY  - JOUR
AU  - N. A. Slepov
TI  - Convergence rate of random geometric sum distributions to the Laplace law
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 149
EP  - 174
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a7/
LA  - ru
ID  - TVP_2021_66_1_a7
ER  - 
%0 Journal Article
%A N. A. Slepov
%T Convergence rate of random geometric sum distributions to the Laplace law
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 149-174
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a7/
%G ru
%F TVP_2021_66_1_a7
N. A. Slepov. Convergence rate of random geometric sum distributions to the Laplace law. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 149-174. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a7/