Mots-clés : Euler constant
@article{TVP_2021_66_1_a5,
author = {S. V. Nagaev},
title = {An estimate for the sum of the {Spitzer} series and its generalization},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {110--128},
year = {2021},
volume = {66},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a5/}
}
S. V. Nagaev. An estimate for the sum of the Spitzer series and its generalization. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 110-128. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a5/
[1] S. V. Nagaev, “A new proof of the absolute convergence of the Spitzer series”, Theory Probab. Appl., 54:1 (2010), 151–154 | DOI | DOI | MR | Zbl
[2] B. Rosén, “On the asymptotic distribution of sums of independent identically distributed random variables”, Ark. Mat., 4:4 (1962), 323–332 | DOI | MR | Zbl
[3] W. Feller, An introduction to probability theory and its applications, v. 2, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl
[4] Tze Leung Lai, “Asymptotic moments of random walks with applications to ladder variables and renewal theory”, Ann. Probability, 4:1 (1976), 51–66 | DOI | MR | Zbl
[5] D. Siegmund, “Corrected diffusion approximations in certain random walk problems”, Adv. in Appl. Probab., 11:4 (1979), 701–719 | DOI | MR | Zbl
[6] A. V. Nagaev, “On a method of calculating moments of ladder heights”, Theory Probab. Appl., 30:3 (1986), 569–572 | DOI | MR | Zbl
[7] A. K. Aleškevičenė, “On calculation of moments of ladder heights”, Lithuanian Math. J., 46:2 (2006), 129–145 | DOI | MR | Zbl
[8] S. V. Nagaev, “Exact expressions for the moments of ladder heights”, Siberian Math. J., 51:4 (2010), 675–695 | DOI | MR | Zbl
[9] C. G. Esseen, “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | DOI | MR | Zbl
[10] I. G. Shevtsova, “Ob absolyutnykh konstantakh v neravenstve Berri–Esseena i ego strukturnykh i neravnomernykh utochneniyakh”, Inform. i ee primen., 7:1 (2013), 124–125
[11] I. G. Shevtsova, “On the absolute constants in the Berry–Esseen-type inequalities”, Dokl. Math., 89:3 (2014), 378–381 | DOI | MR | Zbl
[12] C. C. Heyde, “On the influence of moments on the rate of convergence to the normal distribution”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 8:1 (1967), 12–18 | DOI | MR | Zbl
[13] L. V. Rozovsky, “On the convergence conditions of the generalized Spitzer series”, Theory Probab. Appl., 57:4 (2013), 697–698 | DOI | DOI | Zbl
[14] L. V. Rozovskii, “On the precision of an estimate of the remainder term in the central limit theorem”, Theory Probab. Appl., 23:4 (1979), 712–730 | DOI | MR | Zbl
[15] N. Friedman, M. Katz, L. H. Koopmans, “Convergence rates for the central limit theorem”, Proc. Nat. Acad. Sci. U.S.A., 56:4 (1966), 1062–1065 | DOI | MR | Zbl
[16] R. N. Bhattacharya, R. Ranga Rao, Normal approximation and asymptotic expansions, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–London–Sydney, 1976, xiv+274 pp. | MR | MR | Zbl | Zbl
[17] A. S. Kondrik, K. V. Mikhailov, V. I. Chebotarev, “O ravnomernoi otsenke raznosti funktsii raspredeleniya”, Tezisy dokladov XXXI Dalnevostochnoi shkoly-seminara im. akad. E. V. Zolotova, Vladivostok, 2006, 16–17
[18] V. I. Chebotarev, A. S. Kondrik, K. V. Mikhaylov, On an extreme two-point distribution, 2007, arXiv: 0710.3456v1
[19] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 4th ed., Academic Press, New York–London, 1965, xlv+1086 pp. | MR | MR | Zbl | Zbl
[20] C. G. Esseen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9:4 (1968), 290–308 | DOI | MR | Zbl
[21] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl