An estimate for the sum of the Spitzer series and its generalization
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 110-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An upper estimate for the absolute value of the sum of the Spitzer series is obtained. This estimate depends explicitly on the distribution in terms of which the Spitzer series is defined.
Keywords: zeta function, expectation, normal law, Berry–Esseen estimate, Spitzer series.
Mots-clés : Euler constant
@article{TVP_2021_66_1_a5,
     author = {S. V. Nagaev},
     title = {An estimate for the sum of the {Spitzer} series and its generalization},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {110--128},
     year = {2021},
     volume = {66},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a5/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - An estimate for the sum of the Spitzer series and its generalization
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 110
EP  - 128
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a5/
LA  - ru
ID  - TVP_2021_66_1_a5
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T An estimate for the sum of the Spitzer series and its generalization
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 110-128
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a5/
%G ru
%F TVP_2021_66_1_a5
S. V. Nagaev. An estimate for the sum of the Spitzer series and its generalization. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 110-128. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a5/

[1] S. V. Nagaev, “A new proof of the absolute convergence of the Spitzer series”, Theory Probab. Appl., 54:1 (2010), 151–154 | DOI | DOI | MR | Zbl

[2] B. Rosén, “On the asymptotic distribution of sums of independent identically distributed random variables”, Ark. Mat., 4:4 (1962), 323–332 | DOI | MR | Zbl

[3] W. Feller, An introduction to probability theory and its applications, v. 2, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl

[4] Tze Leung Lai, “Asymptotic moments of random walks with applications to ladder variables and renewal theory”, Ann. Probability, 4:1 (1976), 51–66 | DOI | MR | Zbl

[5] D. Siegmund, “Corrected diffusion approximations in certain random walk problems”, Adv. in Appl. Probab., 11:4 (1979), 701–719 | DOI | MR | Zbl

[6] A. V. Nagaev, “On a method of calculating moments of ladder heights”, Theory Probab. Appl., 30:3 (1986), 569–572 | DOI | MR | Zbl

[7] A. K. Aleškevičenė, “On calculation of moments of ladder heights”, Lithuanian Math. J., 46:2 (2006), 129–145 | DOI | MR | Zbl

[8] S. V. Nagaev, “Exact expressions for the moments of ladder heights”, Siberian Math. J., 51:4 (2010), 675–695 | DOI | MR | Zbl

[9] C. G. Esseen, “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | DOI | MR | Zbl

[10] I. G. Shevtsova, “Ob absolyutnykh konstantakh v neravenstve Berri–Esseena i ego strukturnykh i neravnomernykh utochneniyakh”, Inform. i ee primen., 7:1 (2013), 124–125

[11] I. G. Shevtsova, “On the absolute constants in the Berry–Esseen-type inequalities”, Dokl. Math., 89:3 (2014), 378–381 | DOI | MR | Zbl

[12] C. C. Heyde, “On the influence of moments on the rate of convergence to the normal distribution”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 8:1 (1967), 12–18 | DOI | MR | Zbl

[13] L. V. Rozovsky, “On the convergence conditions of the generalized Spitzer series”, Theory Probab. Appl., 57:4 (2013), 697–698 | DOI | DOI | Zbl

[14] L. V. Rozovskii, “On the precision of an estimate of the remainder term in the central limit theorem”, Theory Probab. Appl., 23:4 (1979), 712–730 | DOI | MR | Zbl

[15] N. Friedman, M. Katz, L. H. Koopmans, “Convergence rates for the central limit theorem”, Proc. Nat. Acad. Sci. U.S.A., 56:4 (1966), 1062–1065 | DOI | MR | Zbl

[16] R. N. Bhattacharya, R. Ranga Rao, Normal approximation and asymptotic expansions, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–London–Sydney, 1976, xiv+274 pp. | MR | MR | Zbl | Zbl

[17] A. S. Kondrik, K. V. Mikhailov, V. I. Chebotarev, “O ravnomernoi otsenke raznosti funktsii raspredeleniya”, Tezisy dokladov XXXI Dalnevostochnoi shkoly-seminara im. akad. E. V. Zolotova, Vladivostok, 2006, 16–17

[18] V. I. Chebotarev, A. S. Kondrik, K. V. Mikhaylov, On an extreme two-point distribution, 2007, arXiv: 0710.3456v1

[19] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 4th ed., Academic Press, New York–London, 1965, xlv+1086 pp. | MR | MR | Zbl | Zbl

[20] C. G. Esseen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9:4 (1968), 290–308 | DOI | MR | Zbl

[21] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl