Approximation of a~Wiener process local time by~functionals of random walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 73-93
Voir la notice de l'article provenant de la source Math-Net.Ru
A sequence of compound Poisson processes constructed from sums of identically
distributed random variables that weakly converges to a Wiener process is
considered. Certain functionals of these processes are shown to converge in
distribution to the local time of a Wiener process.
Keywords:
random process, limit theorem, local time.
@article{TVP_2021_66_1_a3,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {Approximation of {a~Wiener} process local time by~functionals of random walks},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {73--93},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a3/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - Approximation of a~Wiener process local time by~functionals of random walks JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 73 EP - 93 VL - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a3/ LA - ru ID - TVP_2021_66_1_a3 ER -
%0 Journal Article %A I. A. Ibragimov %A N. V. Smorodina %A M. M. Faddeev %T Approximation of a~Wiener process local time by~functionals of random walks %J Teoriâ veroâtnostej i ee primeneniâ %D 2021 %P 73-93 %V 66 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a3/ %G ru %F TVP_2021_66_1_a3
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Approximation of a~Wiener process local time by~functionals of random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 73-93. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a3/