Remarks on asymptotic independence
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 55-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce several natural definitions of asymptotic independence of two sequences of random elements. We discuss their basic properties, some simple connections between them, and connections with properties of weak dependence. In particular, the case of tight sequences is considered in detail. Finally, in order to clarify the relationships between different definitions, we provide some counterexamples.
Keywords: asymptotic independence, weak dependence.
@article{TVP_2021_66_1_a2,
     author = {Yu. A. Davydov and S. Novikov},
     title = {Remarks on asymptotic independence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {55--72},
     year = {2021},
     volume = {66},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a2/}
}
TY  - JOUR
AU  - Yu. A. Davydov
AU  - S. Novikov
TI  - Remarks on asymptotic independence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 55
EP  - 72
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a2/
LA  - ru
ID  - TVP_2021_66_1_a2
ER  - 
%0 Journal Article
%A Yu. A. Davydov
%A S. Novikov
%T Remarks on asymptotic independence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 55-72
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a2/
%G ru
%F TVP_2021_66_1_a2
Yu. A. Davydov; S. Novikov. Remarks on asymptotic independence. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 55-72. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a2/

[1] F. Baccelli, C. Bordenave, “The radial spanning tree of a Poisson point process”, Ann. Appl. Probab., 17:1 (2007), 305–359 | DOI | MR | Zbl

[2] R. C. Bradley, “Basic properties of strong mixing conditions. A survey and some open questions”, Probab. Surv., 2 (2005), 107–144 | DOI | MR | Zbl

[3] R. C. Bradley, Introduction to strong mixing conditions, v. 1–3, Kendrick Press, Heber City, UT, 2007, xviii+539 pp., xii+553 pp., xii+597 pp. | MR | MR | MR | Zbl

[4] A. Bulinski, A. Shashkin, Limit theorems for associated random fields and related systems, Adv. Ser. Stat. Sci. Appl. Probab., 10, World Sci. Publ., Hackensack, NJ, 2007, xii+436 pp. | DOI | MR | Zbl

[5] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[6] Y. Davydov, V. Rotar, “On asymptotic proximity of distributions”, J. Theoret. Probab., 22:1 (2009), 82–98 | DOI | MR | Zbl

[7] P. Doukhan, Mixing. Properties and examples, Lect. Notes Stat., 85, Springer-Verlag, New York, 1994, xii+142 pp. | DOI | MR | Zbl

[8] R. M. Dudley, Real analysis and probability, Cambridge Stud. Adv. Math., 74, 2nd ed., Cambridge Univ. Press, Cambridge, 2002, x+555 pp. | DOI | MR | Zbl

[9] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl

[10] E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants, Math. Appl. (Berlin), 31, Springer-Verlag, Berlin, 2000, x+169 pp. | MR | Zbl

[11] M. Rosenblatt, “A central limit theorem and a strong mixing condition”, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 43–47 | DOI | MR | Zbl