@article{TVP_2021_66_1_a2,
author = {Yu. A. Davydov and S. Novikov},
title = {Remarks on asymptotic independence},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {55--72},
year = {2021},
volume = {66},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a2/}
}
Yu. A. Davydov; S. Novikov. Remarks on asymptotic independence. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 55-72. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a2/
[1] F. Baccelli, C. Bordenave, “The radial spanning tree of a Poisson point process”, Ann. Appl. Probab., 17:1 (2007), 305–359 | DOI | MR | Zbl
[2] R. C. Bradley, “Basic properties of strong mixing conditions. A survey and some open questions”, Probab. Surv., 2 (2005), 107–144 | DOI | MR | Zbl
[3] R. C. Bradley, Introduction to strong mixing conditions, v. 1–3, Kendrick Press, Heber City, UT, 2007, xviii+539 pp., xii+553 pp., xii+597 pp. | MR | MR | MR | Zbl
[4] A. Bulinski, A. Shashkin, Limit theorems for associated random fields and related systems, Adv. Ser. Stat. Sci. Appl. Probab., 10, World Sci. Publ., Hackensack, NJ, 2007, xii+436 pp. | DOI | MR | Zbl
[5] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[6] Y. Davydov, V. Rotar, “On asymptotic proximity of distributions”, J. Theoret. Probab., 22:1 (2009), 82–98 | DOI | MR | Zbl
[7] P. Doukhan, Mixing. Properties and examples, Lect. Notes Stat., 85, Springer-Verlag, New York, 1994, xii+142 pp. | DOI | MR | Zbl
[8] R. M. Dudley, Real analysis and probability, Cambridge Stud. Adv. Math., 74, 2nd ed., Cambridge Univ. Press, Cambridge, 2002, x+555 pp. | DOI | MR | Zbl
[9] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl
[10] E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants, Math. Appl. (Berlin), 31, Springer-Verlag, Berlin, 2000, x+169 pp. | MR | Zbl
[11] M. Rosenblatt, “A central limit theorem and a strong mixing condition”, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 43–47 | DOI | MR | Zbl