@article{TVP_2021_66_1_a0,
author = {G. A. Afanasiev},
title = {A~vacation queue $\mathrm{M}|\mathrm{G}|1$ with close-down times},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--19},
year = {2021},
volume = {66},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a0/}
}
G. A. Afanasiev. A vacation queue $\mathrm{M}|\mathrm{G}|1$ with close-down times. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a0/
[1] V. G. Ushakov, “Sistema obsluzhivaniya s gipereksponentsialnym vkhodyaschim potokom i profilaktikami pribora”, Inform. i ee primen., 10:2 (2016), 92–97 | DOI
[2] A. Krishsnamoorthy, P. K. Pramod, S. R. Chakravarthy, “Queues with interruptions: a survey”, TOP, 22:1 (2014), 290–320 | DOI | MR | Zbl
[3] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR | Zbl
[4] E. Morozov, D. Fiems, H. Bruneel, “Stability analysis of multiserver discrete-time queueing systems with renewal-type server interruptions”, Performance Evaluation, 68:12 (2011), 1261–1275 | DOI
[5] L. G. Afanasyeva, A. V. Tkachenko, “Stability conditions for queueing systems with regenerative flow of interruptions”, Theory Probab. Appl., 63:4 (2019), 507–531 | DOI | DOI | MR | Zbl
[6] G. A. Afanasev, “Ispolzovanie teorii massovogo obsluzhivaniya dlya organizatsii ekspluatatsii inzhenernykh sistem zhilykh zdanii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2019, no. 4, 52–64 | DOI
[7] G. A. Afanasyev, K. A. Shreiber, “Scheduling prophylactic maintenance of engineering systems of residential buildings”, J. Phys. Conf. Ser., 1425 (2019), 012045, 7 pp. | DOI
[8] O. C. Ibe, “M/G/1 vacation queueing systems with server timeout”, Amer. J. Oper. Res., 5:2 (2015), 77–88 | DOI
[9] Zhisheng Niu, Tao Shu, Y. Takahashi, “A vacation queue with setup and close-down times and batch Markovian arrival processes”, Performance Evaluation, 54:3 (2003), 225–248 | DOI
[10] B. T. Doshi, “Queueing systems with vacations – a survey”, Queueing Syst., 1:1 (1986), 29–66 | DOI | MR | Zbl
[11] B. T. Doshi, “Single-server queues with vacations”, Stochastic analysis of computer and communication systems, North-Holland, Amsterdam, 1990, 217–265 | MR | Zbl
[12] H. Takagi, Queueing analysis: a foundation of performance analysis, v. 1, Vacation and priority systems, Part 1, North-Holland Publishing Co., Amsterdam, 1991, xii+487 pp. | MR | Zbl
[13] Naishuo Tian, Zhe George Zhang, Vacation queueing models. Theory and applications, Internat. Ser. Oper. Res. Management Sci., 93, Spinger, New York, 2006, xii+385 pp. | DOI | MR | Zbl
[14] S. W. Fuhrmann, R. B. Cooper, “Stochastic decompositions in $M/G/1$ queue with generalized vacations”, Oper. Res., 33:5 (1985), 1117–1129 | DOI | MR | Zbl
[15] L. D. Servi, S. G. Finn, “M/M/1 queues with working vacations (M/M/1/WV)”, Performance Evaluation, 50:1 (2002), 41–52 | DOI
[16] O. C. Ibe, O. A. Isijola, “M/M/1 multiple vacation queueing systems with differentiated vacations”, Model. Simul. Eng., 2014 (2014), 158247, 6 pp. | DOI
[17] Jihong Li, Naishuo Tian, “The M/M/1 queue with working vacations and vacation interruption”, J. Syst. Sci. Syst. Eng., 16 (2007), 121–127 | DOI
[18] Ji-Hong Li, Nai-Shuo Tian, Zhan-You Ma, “Performance analysis of $GI/M/1$ queue with working vacations and vacation interruption”, Appl. Math. Model., 32:12 (2008), 2715–2730 | DOI | MR | Zbl
[19] Mian Zhang, Zhengting Hou, “Performance analysis of M/G/1 queue with working vacations and vacation interruption”, J. Comput. Appl. Math., 234:10 (2010), 2977–2985 | DOI | MR | Zbl
[20] C. Sreenivasan, S. R. Chacravarthy, A. Krishnamoorthy, “$MAP/PH/1$ queue with working vacations, vacation interruptions and $N$ policy”, Appl. Math. Model., 37:6 (2013), 3879–3893 | DOI | MR | Zbl
[21] B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, Math. Model., 5, Birkhäuser Boston, Inc., Boston, MA, 1989, xii+314 pp. | DOI | MR | Zbl
[22] W. L. Smith, “Renewal theory and its ramifications”, J. Roy. Statist. Soc. Ser. B, 20:2 (1958), 243–302 | DOI | MR | Zbl
[23] T. L. Saaty, Elements of queueing theory, with applications, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1961, xv+423 pp. | MR | MR | Zbl | Zbl