A vacation queue $\mathrm{M}|\mathrm{G}|1$ with close-down times
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 3-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a single-channel system with service vacations, a Poisson input flow, and an arbitrarily distributed service time. Interruptions in service can mean either a complete shutdown of the server for a random period of time or a transition to a different (nonstandard) regime—they can occur either at the end of busy periods when the system is operating in the standard regime, or at the end of vacations at which the system contains no customers. We assume that there is a random timeout before a possible vacation and that the vacation occurs at the end of this timeout if no customers were received by the system during the timeout. Otherwise, the vacation is canceled and the system resumes standard operations. We consider three regimes with different conditions regarding the presence of timeouts and the rules for resuming the standard regime. Under fairly general assumptions concerning distributions of timeout times, we obtain durations of vacations, and processes describing the performance of the system during interruptions, formulas for the distribution, and expectation of the number of customers in the system in the stationary regime. Corresponding examples are given. For a number of special cases our results coincide with those available in the literature.
Keywords: queueing systems with vacations, timeout policy, stationary distribution of the number of customers in the system.
@article{TVP_2021_66_1_a0,
     author = {G. A. Afanasiev},
     title = {A~vacation queue $\mathrm{M}|\mathrm{G}|1$ with close-down times},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--19},
     year = {2021},
     volume = {66},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a0/}
}
TY  - JOUR
AU  - G. A. Afanasiev
TI  - A vacation queue $\mathrm{M}|\mathrm{G}|1$ with close-down times
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 3
EP  - 19
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a0/
LA  - ru
ID  - TVP_2021_66_1_a0
ER  - 
%0 Journal Article
%A G. A. Afanasiev
%T A vacation queue $\mathrm{M}|\mathrm{G}|1$ with close-down times
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 3-19
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a0/
%G ru
%F TVP_2021_66_1_a0
G. A. Afanasiev. A vacation queue $\mathrm{M}|\mathrm{G}|1$ with close-down times. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/TVP_2021_66_1_a0/

[1] V. G. Ushakov, “Sistema obsluzhivaniya s gipereksponentsialnym vkhodyaschim potokom i profilaktikami pribora”, Inform. i ee primen., 10:2 (2016), 92–97 | DOI

[2] A. Krishsnamoorthy, P. K. Pramod, S. R. Chakravarthy, “Queues with interruptions: a survey”, TOP, 22:1 (2014), 290–320 | DOI | MR | Zbl

[3] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR | Zbl

[4] E. Morozov, D. Fiems, H. Bruneel, “Stability analysis of multiserver discrete-time queueing systems with renewal-type server interruptions”, Performance Evaluation, 68:12 (2011), 1261–1275 | DOI

[5] L. G. Afanasyeva, A. V. Tkachenko, “Stability conditions for queueing systems with regenerative flow of interruptions”, Theory Probab. Appl., 63:4 (2019), 507–531 | DOI | DOI | MR | Zbl

[6] G. A. Afanasev, “Ispolzovanie teorii massovogo obsluzhivaniya dlya organizatsii ekspluatatsii inzhenernykh sistem zhilykh zdanii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2019, no. 4, 52–64 | DOI

[7] G. A. Afanasyev, K. A. Shreiber, “Scheduling prophylactic maintenance of engineering systems of residential buildings”, J. Phys. Conf. Ser., 1425 (2019), 012045, 7 pp. | DOI

[8] O. C. Ibe, “M/G/1 vacation queueing systems with server timeout”, Amer. J. Oper. Res., 5:2 (2015), 77–88 | DOI

[9] Zhisheng Niu, Tao Shu, Y. Takahashi, “A vacation queue with setup and close-down times and batch Markovian arrival processes”, Performance Evaluation, 54:3 (2003), 225–248 | DOI

[10] B. T. Doshi, “Queueing systems with vacations – a survey”, Queueing Syst., 1:1 (1986), 29–66 | DOI | MR | Zbl

[11] B. T. Doshi, “Single-server queues with vacations”, Stochastic analysis of computer and communication systems, North-Holland, Amsterdam, 1990, 217–265 | MR | Zbl

[12] H. Takagi, Queueing analysis: a foundation of performance analysis, v. 1, Vacation and priority systems, Part 1, North-Holland Publishing Co., Amsterdam, 1991, xii+487 pp. | MR | Zbl

[13] Naishuo Tian, Zhe George Zhang, Vacation queueing models. Theory and applications, Internat. Ser. Oper. Res. Management Sci., 93, Spinger, New York, 2006, xii+385 pp. | DOI | MR | Zbl

[14] S. W. Fuhrmann, R. B. Cooper, “Stochastic decompositions in $M/G/1$ queue with generalized vacations”, Oper. Res., 33:5 (1985), 1117–1129 | DOI | MR | Zbl

[15] L. D. Servi, S. G. Finn, “M/M/1 queues with working vacations (M/M/1/WV)”, Performance Evaluation, 50:1 (2002), 41–52 | DOI

[16] O. C. Ibe, O. A. Isijola, “M/M/1 multiple vacation queueing systems with differentiated vacations”, Model. Simul. Eng., 2014 (2014), 158247, 6 pp. | DOI

[17] Jihong Li, Naishuo Tian, “The M/M/1 queue with working vacations and vacation interruption”, J. Syst. Sci. Syst. Eng., 16 (2007), 121–127 | DOI

[18] Ji-Hong Li, Nai-Shuo Tian, Zhan-You Ma, “Performance analysis of $GI/M/1$ queue with working vacations and vacation interruption”, Appl. Math. Model., 32:12 (2008), 2715–2730 | DOI | MR | Zbl

[19] Mian Zhang, Zhengting Hou, “Performance analysis of M/G/1 queue with working vacations and vacation interruption”, J. Comput. Appl. Math., 234:10 (2010), 2977–2985 | DOI | MR | Zbl

[20] C. Sreenivasan, S. R. Chacravarthy, A. Krishnamoorthy, “$MAP/PH/1$ queue with working vacations, vacation interruptions and $N$ policy”, Appl. Math. Model., 37:6 (2013), 3879–3893 | DOI | MR | Zbl

[21] B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, Math. Model., 5, Birkhäuser Boston, Inc., Boston, MA, 1989, xii+314 pp. | DOI | MR | Zbl

[22] W. L. Smith, “Renewal theory and its ramifications”, J. Roy. Statist. Soc. Ser. B, 20:2 (1958), 243–302 | DOI | MR | Zbl

[23] T. L. Saaty, Elements of queueing theory, with applications, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1961, xv+423 pp. | MR | MR | Zbl | Zbl