On sets of laws of continuous martingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 823-828
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the set of laws of stochastic integrals $H\,{\cdot}\, W$,
where $W$ is a multidimensional Wiener process and $H^2$ takes values in
a compact convex subset $\mathbf{D}$ of the set of symmetric positive
semidefinite matrices, is
weakly dense in the set of laws of martingales $M$ with $d\langle M \rangle/dt$
taking values in $\mathbf{D}$.
Keywords:
Wiener process, continuous martingales, stochastic integrals, weak convergence of measures.
@article{TVP_2020_65_4_a9,
author = {Yu. M. Kabanov},
title = {On sets of laws of continuous martingales},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {823--828},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a9/}
}
Yu. M. Kabanov. On sets of laws of continuous martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 823-828. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a9/