On sets of laws of continuous martingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 823-828
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the set of laws of stochastic integrals $H\,{\cdot}\, W$, where $W$ is a multidimensional Wiener process and $H^2$ takes values in a compact convex subset $\mathbf{D}$ of the set of symmetric positive semidefinite matrices, is weakly dense in the set of laws of martingales $M$ with $d\langle M \rangle/dt$ taking values in $\mathbf{D}$.
Keywords:
Wiener process, continuous martingales, stochastic integrals, weak convergence of measures.
@article{TVP_2020_65_4_a9,
author = {Yu. M. Kabanov},
title = {On sets of laws of continuous martingales},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {823--828},
year = {2020},
volume = {65},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a9/}
}
Yu. M. Kabanov. On sets of laws of continuous martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 823-828. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a9/
[1] Y. Dolinsky, M. Nutz, H. M. Soner, “Weak approximation of $G$-expectations”, Stochastic Process. Appl., 122:2 (2012), 664–675 | DOI | MR | Zbl
[2] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | MR | MR | Zbl | Zbl