On solvability of stochastic differential equations with osmotic velocities
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 806-817 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give conditions such that solutions exist of the stochastic equation with the so-called osmotic velocities (the so-called Nelson's antisymmetric mean derivatives). We show that the solutions may not exist. Specifically, initial conditions are determined by the right-hand sides; however, some right-hand sides do not determine initial conditions, and in this case the solutions do not exist. Moreover, under the “correct” initial condition the solution is shown to be nonunique.
Keywords: mean derivatives, osmotic velocities, equations with osmotic velocities
Mots-clés : existence of solutions.
@article{TVP_2020_65_4_a7,
     author = {Yu. E. Gliklikh},
     title = {On solvability of stochastic differential equations with osmotic velocities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {806--817},
     year = {2020},
     volume = {65},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a7/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - On solvability of stochastic differential equations with osmotic velocities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 806
EP  - 817
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a7/
LA  - ru
ID  - TVP_2020_65_4_a7
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T On solvability of stochastic differential equations with osmotic velocities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 806-817
%V 65
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a7/
%G ru
%F TVP_2020_65_4_a7
Yu. E. Gliklikh. On solvability of stochastic differential equations with osmotic velocities. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 806-817. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a7/

[1] E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085 | DOI

[2] E. Nelson, Dynamical theories of Brownian motion, Princeton Univ. Press, Princeton, NJ, 1967, iii+142 pp. | MR | Zbl

[3] E. Nelson, Quantum fluctuations, Princeton Ser. Phys., Princeton Univ. Press, Princeton, NJ, 1985, viii+147 pp. | MR | Zbl

[4] S. V. Azarina, Yu. E. Gliklikh, “On existence of solutions to stochastic differential equations with current velocities”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:4 (2015), 100–106 | DOI | Zbl

[5] S. V. Azarina, Yu. E. Gliklikh, “On the solvability of nonautonomous stochastic differential equations with current velocities”, Math. Notes, 100:1 (2016), 3–10 | DOI | DOI | MR | Zbl

[6] K. Partasarati, Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1983, 344 pp. ; K. R. Parthasarathy, Introduction to probability and measure, The Macmillan Co. of India, Ltd., Delhi, 1977, xii+312 с. ; Springer-Verlag New York Inc., New York, 1978, xii+312 pp. | MR | Zbl | MR | Zbl | MR

[7] Yu. E. Gliklikh, Global and stochastic analysis with applications to mathematical physics, Theoret. Math. Phys., Springer-Verlag London, Ltd., London, 2011, xxiv+436 pp. | DOI | MR | Zbl

[8] S. V. Azarina, Yu. E. Gliklikh, “Differential inclusions with mean derivatives”, Dynam. Systems Appl., 16:1 (2007), 49–71 | MR | Zbl

[9] J. Cresson, S. Darses, “Stochastic embedding of dynamical systems”, J. Math. Phys., 48:7 (2007), 072703, 54 pp. | DOI | MR | Zbl

[10] U. G. Haussmann, E. Pardoux, “Time reversal of diffusions”, Ann. Probab., 14:4 (1986), 1188–1205 | DOI | MR | Zbl

[11] Sh. Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964, xv+390 pp. | MR | MR | Zbl | Zbl

[12] B. F. Schutz, Geometrical methods of mathematical physics, Cambridge Univ. Press, Cambridge, 1980, xii+250 pp. | DOI | Zbl

[13] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, v. III, Grundlehren Math. Wiss., 232, Springer-Verlag, Berlin–New York, 1979, iii+387 pp. | DOI | MR | MR | Zbl | Zbl