On solvability of stochastic differential equations with osmotic velocities
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 806-817

Voir la notice de l'article provenant de la source Math-Net.Ru

We give conditions such that solutions exist of the stochastic equation with the so-called osmotic velocities (the so-called Nelson's antisymmetric mean derivatives). We show that the solutions may not exist. Specifically, initial conditions are determined by the right-hand sides; however, some right-hand sides do not determine initial conditions, and in this case the solutions do not exist. Moreover, under the “correct” initial condition the solution is shown to be nonunique.
Keywords: mean derivatives, osmotic velocities, equations with osmotic velocities
Mots-clés : existence of solutions.
@article{TVP_2020_65_4_a7,
     author = {Yu. E. Gliklikh},
     title = {On solvability of stochastic differential equations with osmotic velocities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {806--817},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a7/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - On solvability of stochastic differential equations with osmotic velocities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 806
EP  - 817
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a7/
LA  - ru
ID  - TVP_2020_65_4_a7
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T On solvability of stochastic differential equations with osmotic velocities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 806-817
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a7/
%G ru
%F TVP_2020_65_4_a7
Yu. E. Gliklikh. On solvability of stochastic differential equations with osmotic velocities. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 806-817. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a7/