Prokhorov distance with rates of convergence under sublinear expectations
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 778-804
Voir la notice de l'article provenant de la source Math-Net.Ru
Prokhorov distances under sublinear expectations are presented in the CLT and
the functional CLT, and the convergence rates for them are obtained by the
Lindeberg method. In particular, the obtained estimate in the functional CLT
yields the known Borovkov estimate in the classical functional CLT with an
explicit constant.
Keywords:
sublinear expectation, Prokhorov distance, Lindeberg method.
@article{TVP_2020_65_4_a6,
author = {Q. Zhou and A. I. Sakhanenko and J. Guo},
title = {Prokhorov distance with rates of convergence under sublinear expectations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {778--804},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/}
}
TY - JOUR AU - Q. Zhou AU - A. I. Sakhanenko AU - J. Guo TI - Prokhorov distance with rates of convergence under sublinear expectations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 778 EP - 804 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/ LA - ru ID - TVP_2020_65_4_a6 ER -
Q. Zhou; A. I. Sakhanenko; J. Guo. Prokhorov distance with rates of convergence under sublinear expectations. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 778-804. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/