Prokhorov distance with rates of convergence under sublinear expectations
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 778-804

Voir la notice de l'article provenant de la source Math-Net.Ru

Prokhorov distances under sublinear expectations are presented in the CLT and the functional CLT, and the convergence rates for them are obtained by the Lindeberg method. In particular, the obtained estimate in the functional CLT yields the known Borovkov estimate in the classical functional CLT with an explicit constant.
Keywords: sublinear expectation, Prokhorov distance, Lindeberg method.
@article{TVP_2020_65_4_a6,
     author = {Q. Zhou and A. I. Sakhanenko and J. Guo},
     title = {Prokhorov distance with rates of convergence under sublinear expectations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {778--804},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/}
}
TY  - JOUR
AU  - Q. Zhou
AU  - A. I. Sakhanenko
AU  - J. Guo
TI  - Prokhorov distance with rates of convergence under sublinear expectations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 778
EP  - 804
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/
LA  - ru
ID  - TVP_2020_65_4_a6
ER  - 
%0 Journal Article
%A Q. Zhou
%A A. I. Sakhanenko
%A J. Guo
%T Prokhorov distance with rates of convergence under sublinear expectations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 778-804
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/
%G ru
%F TVP_2020_65_4_a6
Q. Zhou; A. I. Sakhanenko; J. Guo. Prokhorov distance with rates of convergence under sublinear expectations. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 778-804. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/