Prokhorov distance with rates of convergence under sublinear expectations
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 778-804 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Prokhorov distances under sublinear expectations are presented in the CLT and the functional CLT, and the convergence rates for them are obtained by the Lindeberg method. In particular, the obtained estimate in the functional CLT yields the known Borovkov estimate in the classical functional CLT with an explicit constant.
Keywords: sublinear expectation, Prokhorov distance, Lindeberg method.
@article{TVP_2020_65_4_a6,
     author = {Q. Zhou and A. I. Sakhanenko and J. Guo},
     title = {Prokhorov distance with rates of convergence under sublinear expectations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {778--804},
     year = {2020},
     volume = {65},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/}
}
TY  - JOUR
AU  - Q. Zhou
AU  - A. I. Sakhanenko
AU  - J. Guo
TI  - Prokhorov distance with rates of convergence under sublinear expectations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 778
EP  - 804
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/
LA  - ru
ID  - TVP_2020_65_4_a6
ER  - 
%0 Journal Article
%A Q. Zhou
%A A. I. Sakhanenko
%A J. Guo
%T Prokhorov distance with rates of convergence under sublinear expectations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 778-804
%V 65
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/
%G ru
%F TVP_2020_65_4_a6
Q. Zhou; A. I. Sakhanenko; J. Guo. Prokhorov distance with rates of convergence under sublinear expectations. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 778-804. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a6/

[1] A. A. Borovkov, “On the rate of convergence for the invariance principle”, Theory Probab. Appl., 18:2 (1974), 207–225 | DOI | MR | Zbl

[2] M. D. Donsker, “An invariance principle for certain probability limit theorems”, Four papers on probability, Mem. Amer. Math. Soc., 6, Amer. Math. Soc., Providence, RI, 1951, 12 pp. | MR | Zbl

[3] Xiao Fang, Shige Peng, Qi-man Shao, Yongsheng Song, “Limit theorems with rate of convergence under sublinear expectations”, Bernoulli, 25:4A (2019), 2564–2596 ; arXiv: 1711.10649v1 | DOI | MR | Zbl

[4] Shige Peng, “Nonlinear expectations and nonlinear Markov chains”, Chinese Ann. Math. Ser. B, 26:2 (2005), 159–184 | DOI | MR | Zbl

[5] Shige Peng, “$G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type”, Stochastic analysis and applications, Abel Symp., 2, Springer, Berlin, 2007, 541–567 | DOI | MR | Zbl

[6] Min Li, Yufeng Shi, “A general central limit theorem under sublinear expectations”, Sci. China Math., 53:8 (2010), 1989–1994 | DOI | MR | Zbl

[7] Shige Peng, Nonlinear expectations and stochastic calculus under uncertainty. With robust CLT and G-Brownian motion, Probab. Theory Stoch. Model., 95, Springer, Berlin, 2019, xiii+212 pp. ; arXiv: 1002.4546v1 | DOI | MR | Zbl

[8] Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Theory Probab. Appl., 1:2 (1956), 157–214 | DOI | MR | Zbl

[9] A. I. Sakhanenko, “Simple method of obtaining estimates in the invariance principle”, Probability theory and mathematical statistics (Kyoto, 1986), Lecture Notes in Math., 1299, Springer, Berlin, 1988, 430–443 | DOI | MR | Zbl

[10] A. I. Sakhanenko, “On the accuracy of normal approximation in the invariance principle”, Siberian Adv. Math., 1:4 (1991), 58–91 | MR | MR | Zbl

[11] A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle”, High dimensional probability II (Seattle, WA, 1999), Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000, 223–245 | DOI | MR | Zbl

[12] A. I. Sakhanenko, “Estimates in the invariance principle in terms of truncated power moments”, Siberian Math. J., 47:6 (2006), 1113–1127 | DOI | MR | Zbl

[13] V. V. Jurinskii, “A smoothing inequality for estimates of the Lévy–Prokhorov distance”, Theory Probab. Appl., 20:1 (1975), 1–10 | DOI | MR | Zbl