Gaussian approximation of the distribution of strongly repelling particles on the unit circle
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 746-777

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a strongly repelling model of $n$ ordered particles $\{e^{i \theta_j}\}_{j=0}^{n-1}$ with the density $p({\theta_0},\dots, \theta_{n-1})=\frac{1}{Z_n} \exp \big\{-\frac{\beta}{2}\sum_{j \ne k} \sin^{-2} \big( \frac{\theta_j-\theta_k}{2}\big)\big\}$, $\beta>0$. Let $\theta_j=2 \pi j/n+x_j/n^2+\mathrm{const}$ such that $\sum_{j=0}^{n-1}x_j=0$. Define $\zeta_n (2 \pi j/n) =x_j/\sqrt{n}$, and extend $\zeta_n$ piecewise linearly to $[0, 2 \pi]$. We prove the functional convergence of $\zeta_n(t)$ to $\zeta(t)=\sqrt{\frac{2}{\beta}} \operatorname{Re} \big( \sum_{k=1}^{\infty} \frac{1}{k} e^{ikt} Z_k \big)$, where $Z_k$ are independent identically distributed complex standard Gaussian random variables.
Keywords: strongly repelling particles, multivariate Gaussian distribution, convergence of finite dimensional distributions, functional convergence.
@article{TVP_2020_65_4_a5,
     author = {A. Soshnikov and Yu. Xu},
     title = {Gaussian approximation of the distribution of strongly repelling particles on the unit circle},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {746--777},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/}
}
TY  - JOUR
AU  - A. Soshnikov
AU  - Yu. Xu
TI  - Gaussian approximation of the distribution of strongly repelling particles on the unit circle
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 746
EP  - 777
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/
LA  - ru
ID  - TVP_2020_65_4_a5
ER  - 
%0 Journal Article
%A A. Soshnikov
%A Yu. Xu
%T Gaussian approximation of the distribution of strongly repelling particles on the unit circle
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 746-777
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/
%G ru
%F TVP_2020_65_4_a5
A. Soshnikov; Yu. Xu. Gaussian approximation of the distribution of strongly repelling particles on the unit circle. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 746-777. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/