Gaussian approximation of the distribution of strongly repelling particles on the unit circle
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 746-777
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a strongly repelling model of $n$ ordered particles
$\{e^{i \theta_j}\}_{j=0}^{n-1}$ with the density
$p({\theta_0},\dots, \theta_{n-1})=\frac{1}{Z_n} \exp
\big\{-\frac{\beta}{2}\sum_{j \ne k} \sin^{-2} \big(
\frac{\theta_j-\theta_k}{2}\big)\big\}$, $\beta>0$.
Let $\theta_j=2 \pi j/n+x_j/n^2+\mathrm{const}$ such that
$\sum_{j=0}^{n-1}x_j=0$. Define $\zeta_n (2 \pi j/n) =x_j/\sqrt{n}$, and extend
$\zeta_n$ piecewise linearly to $[0, 2 \pi]$. We prove the functional
convergence of $\zeta_n(t)$ to
$\zeta(t)=\sqrt{\frac{2}{\beta}} \operatorname{Re} \big( \sum_{k=1}^{\infty}
\frac{1}{k} e^{ikt} Z_k \big)$,
where $Z_k$ are independent identically distributed complex standard Gaussian
random variables.
Keywords:
strongly repelling particles, multivariate Gaussian distribution, convergence of finite dimensional distributions, functional convergence.
@article{TVP_2020_65_4_a5,
author = {A. Soshnikov and Yu. Xu},
title = {Gaussian approximation of the distribution of strongly repelling particles on the unit circle},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {746--777},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/}
}
TY - JOUR AU - A. Soshnikov AU - Yu. Xu TI - Gaussian approximation of the distribution of strongly repelling particles on the unit circle JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 746 EP - 777 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/ LA - ru ID - TVP_2020_65_4_a5 ER -
%0 Journal Article %A A. Soshnikov %A Yu. Xu %T Gaussian approximation of the distribution of strongly repelling particles on the unit circle %J Teoriâ veroâtnostej i ee primeneniâ %D 2020 %P 746-777 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/ %G ru %F TVP_2020_65_4_a5
A. Soshnikov; Yu. Xu. Gaussian approximation of the distribution of strongly repelling particles on the unit circle. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 746-777. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/