Gaussian approximation of the distribution of strongly repelling particles on the unit circle
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 746-777 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a strongly repelling model of $n$ ordered particles $\{e^{i \theta_j}\}_{j=0}^{n-1}$ with the density $p({\theta_0},\dots, \theta_{n-1})=\frac{1}{Z_n} \exp \big\{-\frac{\beta}{2}\sum_{j \ne k} \sin^{-2} \big( \frac{\theta_j-\theta_k}{2}\big)\big\}$, $\beta>0$. Let $\theta_j=2 \pi j/n+x_j/n^2+\mathrm{const}$ such that $\sum_{j=0}^{n-1}x_j=0$. Define $\zeta_n (2 \pi j/n) =x_j/\sqrt{n}$, and extend $\zeta_n$ piecewise linearly to $[0, 2 \pi]$. We prove the functional convergence of $\zeta_n(t)$ to $\zeta(t)=\sqrt{\frac{2}{\beta}} \operatorname{Re} \big( \sum_{k=1}^{\infty} \frac{1}{k} e^{ikt} Z_k \big)$, where $Z_k$ are independent identically distributed complex standard Gaussian random variables.
Keywords: strongly repelling particles, multivariate Gaussian distribution, convergence of finite dimensional distributions, functional convergence.
@article{TVP_2020_65_4_a5,
     author = {A. Soshnikov and Yu. Xu},
     title = {Gaussian approximation of the distribution of strongly repelling particles on the unit circle},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {746--777},
     year = {2020},
     volume = {65},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/}
}
TY  - JOUR
AU  - A. Soshnikov
AU  - Yu. Xu
TI  - Gaussian approximation of the distribution of strongly repelling particles on the unit circle
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 746
EP  - 777
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/
LA  - ru
ID  - TVP_2020_65_4_a5
ER  - 
%0 Journal Article
%A A. Soshnikov
%A Yu. Xu
%T Gaussian approximation of the distribution of strongly repelling particles on the unit circle
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 746-777
%V 65
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/
%G ru
%F TVP_2020_65_4_a5
A. Soshnikov; Yu. Xu. Gaussian approximation of the distribution of strongly repelling particles on the unit circle. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 746-777. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a5/

[1] T. H. Baker, P. J. Forrester, “Finite-$N$ fluctuation formulas for random matrices”, J. Statist. Phys., 88:5-6 (1997), 1371–1386 | DOI | MR | Zbl

[2] M. V. Berry, J. P. Keating, “The Riemann zeros and eigenvalues asymptotics”, SIAM Rev., 41:2 (1999), 236–266 | DOI | MR | Zbl

[3] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl

[4] E. B. Bogomolny, J. P. Keating, “Random matrix theory and the Riemann zeros. II. $n$-point correlations”, Nonlinearity, 9:4 (1996), 911–935 | DOI | MR | Zbl

[5] P. Bourgade, J. P. Keating, “Quantum chaos, random matrix theory, and the Riemann $\zeta$-function”, Chaos, Proceedings of the 14th Poincaré seminar (Paris, 2010), Prog. Math. Phys., 66, Birkhäuser/Springer, Basel, 2013, 125–168 | DOI | MR | Zbl

[6] P. Diaconis, S. N. Evans, “Linear functionals of eigenvalues of random matrices”, Trans. Amer. Math. Soc., 353:7 (2001), 2615–2633 | DOI | MR | Zbl

[7] P. Diaconis, M. Shahshahani, “On the eigenvalues of random matrices”, J. Appl. Probab., 31A (1994), 49–62 | DOI | MR | Zbl

[8] F. J. Dyson, “Correlations between eigenvalues of a random matrix”, Comm. Math. Phys., 19 (1970), 235–250 | DOI | MR | Zbl

[9] P. J. Forrester, Log-gases and random matrices, London Math. Soc. Monogr. Ser., 34, Princeton Univ. Press, Princeton, NJ, 2010, xiv+791 pp. | DOI | MR | Zbl

[10] C. P. Hughes, J. P. Keating, N. O'Connell, “On the characteristic polynomial of a random unitary matrix”, Comm. Math. Phys., 220:2 (2001), 429–451 | DOI | MR | Zbl

[11] K. Johansson, “On Szegő's asymptotic formula for Toeplitz determinants and generalizations”, Bull. Sci. Math. (2), 112:3 (1988), 257–304 | MR | Zbl

[12] J.-P. Kahane, Some random series of functions, D. C. Heath and Co. Raytheon Education Co., Lexington, MA, 1968, viii+184 pp. | MR | MR | Zbl | Zbl

[13] J. P. Keating, N. C. Snaith, “Random matrix theory and $\zeta(1/2+it)$”, Comm. Math. Phys., 214:1 (2000), 57–89 | DOI | MR | Zbl

[14] H. L. Montgomery, “The pair correlation of zeros of the zeta function”, Analytic number theory (St. Louis Univ., St. Louis, MO, 1972), Proc. Sympos. Pure Math., 24, Amer. Math. Soc., Providence, RI, 1973, 181–193 | DOI | MR | Zbl

[15] A. M. Odlyzko, The $10^{20}$-th zero of the Riemann zeta function and 175 million of its neighbors, unpubl. manuscript, 1992, 163 pp. http://www.dtc.umn.edu/~odlyzko/unpublished/index.html

[16] Z. Rudnick, P. Sarnak, “Zeros of principal $L$-functions and random matrix theory”, Duke Math. J., 81:2 (1996), 269–322 | DOI | MR | Zbl

[17] A. Soshnikov, “The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities”, Ann. Probab., 28:3 (2000), 1353–1370 | DOI | MR | Zbl

[18] T. Tao, Topics in random matrix theory, Grad. Stud. Math., 132, Amer. Math. Soc., Providence, RI, 2012, x+282 pp. | DOI | MR | Zbl