Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 725-745
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_t=\sum_{j=-\infty}^{\infty}A_j\varepsilon_{t-j}$ be a dependent linear
process, where the $\{\varepsilon_n,\, n\in \mathbf{Z}\}$ is a sequence of zero
mean $m$-extended negatively dependent ($m$-END, for short) random variables
which is stochastically dominated by a random variable $\varepsilon$, and
$\{A_n,\, n\in \mathbf{Z}\}$ is also a sequence of zero mean $m$-END random
variables. Under some suitable conditions, the complete moment convergence for
the dependent linear processes is established. In particular, the sufficient
conditions of the complete moment convergence are provided. As an application,
we further study the convergence of the state observers of linear-time-invariant
systems.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
complete moment convergence, linear processes, linear-time-invariant systems.
Mots-clés : END random variables
                    
                  
                
                
                Mots-clés : END random variables
@article{TVP_2020_65_4_a4,
     author = {C. Lu and X. J. Wang and Y. Wu},
     title = {Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {725--745},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a4/}
}
                      
                      
                    TY - JOUR AU - C. Lu AU - X. J. Wang AU - Y. Wu TI - Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 725 EP - 745 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a4/ LA - ru ID - TVP_2020_65_4_a4 ER -
%0 Journal Article %A C. Lu %A X. J. Wang %A Y. Wu %T Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems %J Teoriâ veroâtnostej i ee primeneniâ %D 2020 %P 725-745 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a4/ %G ru %F TVP_2020_65_4_a4
C. Lu; X. J. Wang; Y. Wu. Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 725-745. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a4/
