Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 725-745 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X_t=\sum_{j=-\infty}^{\infty}A_j\varepsilon_{t-j}$ be a dependent linear process, where the $\{\varepsilon_n,\, n\in \mathbf{Z}\}$ is a sequence of zero mean $m$-extended negatively dependent ($m$-END, for short) random variables which is stochastically dominated by a random variable $\varepsilon$, and $\{A_n,\, n\in \mathbf{Z}\}$ is also a sequence of zero mean $m$-END random variables. Under some suitable conditions, the complete moment convergence for the dependent linear processes is established. In particular, the sufficient conditions of the complete moment convergence are provided. As an application, we further study the convergence of the state observers of linear-time-invariant systems.
Keywords: complete moment convergence, linear processes, linear-time-invariant systems.
Mots-clés : END random variables
@article{TVP_2020_65_4_a4,
     author = {C. Lu and X. J. Wang and Y. Wu},
     title = {Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {725--745},
     year = {2020},
     volume = {65},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a4/}
}
TY  - JOUR
AU  - C. Lu
AU  - X. J. Wang
AU  - Y. Wu
TI  - Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 725
EP  - 745
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a4/
LA  - ru
ID  - TVP_2020_65_4_a4
ER  - 
%0 Journal Article
%A C. Lu
%A X. J. Wang
%A Y. Wu
%T Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 725-745
%V 65
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a4/
%G ru
%F TVP_2020_65_4_a4
C. Lu; X. J. Wang; Y. Wu. Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 725-745. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a4/

[1] A. Adler, A. Rosalsky, “Some general strong laws for weighted sums of stochastically dominated random variables”, Stochastic Anal. Appl., 5:1 (1987), 1–16 | DOI | MR | Zbl

[2] A. Adler, A. Rosalsky, R. L. Taylor, “Strong laws of large numbers for weighted sums of random elements in normed linear spaces”, Internat. J. Math. Math. Sci., 12:3 (1989), 507–529 | DOI | MR | Zbl

[3] Zhidong Bai, Chun Su, “The complete convergence for partial sums of i.i.d. random variables”, Sci. Sinica Ser. A, 28:12 (1985), 1261–1277 | MR | Zbl

[4] V. M. Charitopoulos, V. Dua, “A unified framework for model-based multi-objective linear process and energy optimisation under uncertainty”, Appl. Energy, 186, Part 3 (2017), 539–548 | DOI

[5] Pingyan Chen, Peng Bai, Soo Hak Sung, “The von Bahr–Esseen moment inequality for pairwise independent random variables and applications”, J. Math. Anal. Appl., 419:2 (2014), 1290–1302 | DOI | MR | Zbl

[6] Y. S. Chow, “On the rate of moment convergence of sample sums and extremes”, Bull. Inst. Math. Acad. Sinica, 16:3 (1988), 177–201 | MR | Zbl

[7] S. M. Hosseini, A. Nezakati, “Complete moment convergence for the dependent linear processes with random coefficients”, Acta Math. Sin. (Engl. Ser.), 35:8 (2019), 1321–1333 | DOI | MR | Zbl

[8] P. L. Hsu, H. Robbins, “Complete convergence and the law of large numbers”, Proc. Natl. Acad. Sci. USA, 33:2 (1947), 25–31 | DOI | MR | Zbl

[9] Tien-Chung Hu, Kuo-Lung Wang, A. Rosalsky, “Complete convergence theorems for extended negatively dependent random variables”, Sankhya A, 77:1 (2015), 1–29 | DOI | MR | Zbl

[10] Mi-Hwa Ko, “Strong laws of large numbers for linear processes generated by associated random variables in a Hilbert space”, Honam Math. J., 30:4 (2008), 703–711 | DOI | MR | Zbl

[11] Mi-Hwa Ko, “The complete moment convergence for CNA random vectors in Hilbert spaces”, J. Inequal. Appl., 2017 (2017), 290, 11 pp. | DOI | MR | Zbl

[12] Mi-Hwa Ko, “On complete moment convergence for CAANA random vectors in Hilbert spaces”, Statist. Probab. Lett., 138 (2018), 104–110 | DOI | MR | Zbl

[13] E. L. Lehmann, “Some concepts of dependence”, Ann. Math. Statist., 37:5 (1966), 1137–1153 | DOI | MR | Zbl

[14] Han-Ying Liang, “Complete convergence for weighted sums of negatively associated random variables”, Statist. Probab. Lett., 48:4 (2000), 317–325 | DOI | MR | Zbl

[15] Li Liu, “Precise large deviations for dependent random variables with heavy tails”, Statist. Probab. Lett., 79:9 (2009), 1290–1298 | DOI | MR | Zbl

[16] H. Naderi, M. Amini, A. Bozorgnia, “On the rate of complete convergence for weighted sums of NSD random variables and an application”, Appl. Math. J. Chinese Univ. Ser. B, 32:3 (2017), 270–280 | DOI | MR | Zbl

[17] M. A. Nowak, F. Michor, Y. Iwasa, “The linear process of somatic evolution”, Proc. Natl. Acad. Sci. USA, 100:25 (2003), 14966–14969 | DOI

[18] K. Ogata, Modern control engineering, 4th ed., Prentice-Hall, Englewood Cliffs, NJ, 2002, 964 pp.

[19] R. I. A. Patterson, J. Singh, M. Balthasar, M. Kraft, J. R. Norris, “The linear process deferment algorithm: a new technique for solving population balance equations”, SIAM J. Sci. Comput., 28:1 (2006), 303–320 | DOI | MR | Zbl

[20] De Hua Qiu, Ping Yan Chen, “Complete and complete moment convergence for weighted sums of widely orthant dependent random variables”, Acta Math. Sin. (Engl. Ser.), 30:9 (2014), 1539–1548 | DOI | MR | Zbl

[21] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[22] Aiting Shen, Mingxiang Xue, A. Volodin, “Complete moment convergence for arrays of rowwise NSD random variables”, Stochastics, 88:4 (2016), 606–621 | DOI | MR | Zbl

[23] Aiting Shen, Yu Zhang, Wenjuan Wang, “Complete convergence and complete moment convergence for extended nagatively dependent random variables”, Filomat, 31:5 (2017), 1381–1394 | DOI | MR

[24] R. Shibata, “Asymptotically efficient selection of the order of the model for estimating parameters of a linear process”, Ann. Statist., 8:1 (1980), 147–164 | DOI | MR | Zbl

[25] Le Van Thanh, G. G. Yin, Le Yi Wang, “State observers with random sampling times and convergence analysis of double-indexed and randomly weighted sums of mixing processes”, SIAM J. Control Optim., 49:1 (2011), 106–124 | DOI | MR | Zbl

[26] Jiangfeng Wang, Qunying Wu, “Central limit theorem for stationary linear processes generated by linearly negative quadrant-dependent sequence”, J. Inequal. Appl., 2012 (2012), 45, 7 pp. | DOI | MR | Zbl

[27] Le Yi Wang, Chanying Li, G. G. Yin, Lei Guo, Cheng-Zhong Xu, “State observability and observers of linear-time-invariant systems under irregular sampling and sensor limitations”, IEEE Trans. Automat. Control, 56:11 (2011), 2639–2654 | DOI | MR | Zbl

[28] Xuejun Wang, Tien-Chung Hu, A. Volodin, Shuhe Hu, “Complete convergence for weighted sums and arrays of rowwise extended negatively dependent random variables”, Comm. Statist. Theory Methods, 42:13 (2013), 2391–2401 | DOI | MR | Zbl

[29] Xuejun Wang, Yi Wu, Shuhe Hu, “Exponential probability inequality for $m$-END random variables and its applications”, Metrika, 79:2 (2016), 127–147 | DOI | MR | Zbl

[30] Xuejun Wang, Yi Wu, Shuhe Hu, “Complete moment convergence for double-indexed randomly weighted sums and its applications”, Statistics, 52:3 (2018), 503–518 | DOI | MR | Zbl

[31] Yi Wu, Xuejun Wang, Shuhe Hu, “Complete moment convergence for weighted sums of weakly dependent random variables and its application in nonparametric regression model”, Statist. Probab. Lett., 127 (2017), 56–66 | DOI | MR | Zbl

[32] Yongfeng Wu, “On complete moment convergence for arrays of rowwise negatively associated random variables”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 108:2 (2014), 669–681 | DOI | MR | Zbl

[33] Guohui Zhang, “Complete convergence for Sung's type weighted sums of END random variables”, J. Inequal. Appl., 2014 (2014), 353, 11 pp. | DOI | MR | Zbl