Probabilistic approximation of the solution of the Cauchy problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 710-724
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose two methods of approximation of the solution of the Cauchy problem
for the higher-order Schrödinger equation. In the first method, the
expectation of a functional of some random point field is used, and in the
second, the expectation of a functional of the normed sums of
independent and identically distributed random variables with finite moment of
order $2m+2$ is employed.
Keywords:
Schrödinger equation, Poisson random measure, limit theorems.
@article{TVP_2020_65_4_a3,
author = {M. V. Platonova and S. V. Tsykin},
title = {Probabilistic approximation of the solution of the {Cauchy} problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {710--724},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a3/}
}
TY - JOUR AU - M. V. Platonova AU - S. V. Tsykin TI - Probabilistic approximation of the solution of the Cauchy problem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 710 EP - 724 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a3/ LA - ru ID - TVP_2020_65_4_a3 ER -
M. V. Platonova; S. V. Tsykin. Probabilistic approximation of the solution of the Cauchy problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 710-724. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a3/