@article{TVP_2020_65_4_a3,
author = {M. V. Platonova and S. V. Tsykin},
title = {Probabilistic approximation of the solution of the {Cauchy} problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {710--724},
year = {2020},
volume = {65},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a3/}
}
M. V. Platonova; S. V. Tsykin. Probabilistic approximation of the solution of the Cauchy problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 710-724. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a3/
[1] Yu. L. Dalecky, S. V. Fomin, Measures and differential equations in infinite-dimensional space, Math. Appl. (Soviet Ser.), 76, Kluwer Acad. Publ., Dordrecht, 1991, xvi+337 pp. | MR | MR | Zbl | Zbl
[2] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Probabilistic approximation of solutions of the cauchy problem for some evolution equations”, J. Math. Sci. (N.Y.), 188:6 (2013), 700–716 | DOI | MR | Zbl
[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a limit theorem related to probabilistic representation of solution to the Cauchy problem for the Schrödinger equation”, J. Math. Sci. (N.Y.), 229:6 (2018), 702–713 | DOI | MR | Zbl
[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Probabilistic approximation of the evolution operator”, Funct. Anal. Appl., 52:2 (2018), 101–112 | DOI | DOI | MR | Zbl
[6] P. N. Ievlev, “A probabilistic representation of the Cauchy problem solution for the multidimensional Schrödinger equation”, J. Math. Sci. (N.Y.), 244:5 (2020), 796–804 | DOI | MR
[7] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | DOI | MR | MR | Zbl | Zbl
[8] M. V. Platonova, S. V. Tsykin, “A probabilistic approximation of the Cauchy problem solution for the Schrödinger equation with a fractional derivative operator”, J. Math. Sci. (N.Y.), 244:5 (2020), 874–884 | DOI | MR
[9] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Inc., New York–London, 1972, xvii+325 pp. | MR | MR | Zbl
[10] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, 2-e pererab. i susch. dop. izd., Lenand, M., 2015, 336 pp.
[11] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva i dr., Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981, 200 pp. | Zbl
[12] R. Carles, E. Moulay, “Higher order Schrödinger equations”, J. Phys. A, 45:39 (2012), 395304, 11 pp. | DOI | MR | Zbl
[13] R. Carles, W. Lucha, E. Moulay, “Higher-order Schrödinger and Hartree–Fock equations”, J. Math. Phys., 56:12 (2015), 122301, 17 pp. | DOI | MR | Zbl
[14] JinMyong Kim, A. Arnold, Xiaohua Yao, “Global estimates of fundamental solutions for higher-order Schrödinger equations”, Monatsh. Math., 168:2 (2012), 253–266 | DOI | MR | Zbl