Probabilistic approximation of the solution of the Cauchy problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 710-724 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose two methods of approximation of the solution of the Cauchy problem for the higher-order Schrödinger equation. In the first method, the expectation of a functional of some random point field is used, and in the second, the expectation of a functional of the normed sums of independent and identically distributed random variables with finite moment of order $2m+2$ is employed.
Keywords: Schrödinger equation, Poisson random measure, limit theorems.
@article{TVP_2020_65_4_a3,
     author = {M. V. Platonova and S. V. Tsykin},
     title = {Probabilistic approximation of the solution of the {Cauchy} problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {710--724},
     year = {2020},
     volume = {65},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a3/}
}
TY  - JOUR
AU  - M. V. Platonova
AU  - S. V. Tsykin
TI  - Probabilistic approximation of the solution of the Cauchy problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 710
EP  - 724
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a3/
LA  - ru
ID  - TVP_2020_65_4_a3
ER  - 
%0 Journal Article
%A M. V. Platonova
%A S. V. Tsykin
%T Probabilistic approximation of the solution of the Cauchy problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 710-724
%V 65
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a3/
%G ru
%F TVP_2020_65_4_a3
M. V. Platonova; S. V. Tsykin. Probabilistic approximation of the solution of the Cauchy problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 710-724. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a3/

[1] Yu. L. Dalecky, S. V. Fomin, Measures and differential equations in infinite-dimensional space, Math. Appl. (Soviet Ser.), 76, Kluwer Acad. Publ., Dordrecht, 1991, xvi+337 pp. | MR | MR | Zbl | Zbl

[2] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Probabilistic approximation of solutions of the cauchy problem for some evolution equations”, J. Math. Sci. (N.Y.), 188:6 (2013), 700–716 | DOI | MR | Zbl

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a limit theorem related to probabilistic representation of solution to the Cauchy problem for the Schrödinger equation”, J. Math. Sci. (N.Y.), 229:6 (2018), 702–713 | DOI | MR | Zbl

[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Probabilistic approximation of the evolution operator”, Funct. Anal. Appl., 52:2 (2018), 101–112 | DOI | DOI | MR | Zbl

[6] P. N. Ievlev, “A probabilistic representation of the Cauchy problem solution for the multidimensional Schrödinger equation”, J. Math. Sci. (N.Y.), 244:5 (2020), 796–804 | DOI | MR

[7] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | DOI | MR | MR | Zbl | Zbl

[8] M. V. Platonova, S. V. Tsykin, “A probabilistic approximation of the Cauchy problem solution for the Schrödinger equation with a fractional derivative operator”, J. Math. Sci. (N.Y.), 244:5 (2020), 874–884 | DOI | MR

[9] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Inc., New York–London, 1972, xvii+325 pp. | MR | MR | Zbl

[10] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, 2-e pererab. i susch. dop. izd., Lenand, M., 2015, 336 pp.

[11] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva i dr., Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981, 200 pp. | Zbl

[12] R. Carles, E. Moulay, “Higher order Schrödinger equations”, J. Phys. A, 45:39 (2012), 395304, 11 pp. | DOI | MR | Zbl

[13] R. Carles, W. Lucha, E. Moulay, “Higher-order Schrödinger and Hartree–Fock equations”, J. Math. Phys., 56:12 (2015), 122301, 17 pp. | DOI | MR | Zbl

[14] JinMyong Kim, A. Arnold, Xiaohua Yao, “Global estimates of fundamental solutions for higher-order Schrödinger equations”, Monatsh. Math., 168:2 (2012), 253–266 | DOI | MR | Zbl