The joint law of a max-continuous local submartingale and its maximum
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 693-709 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the family of converging max-continuous local submartingales starting from zero. An equivalence relation for processes of this family is introduced so that two processes are called equivalent if their joint laws of the terminal value and the maximum are the same. We single out a subfamily of processes of simple structure that have a unique (in the sense of the distribution) representative in each equivalence class. Next, using an extension of Monroe's theorem, we embed a process of this subfamily in a Brownian motion using a minimal time-change, and from this embedding construct a continuous local martingale from the same equivalence class. Moreover, it is found that whether a process from this family belongs to the class of uniformly integrable martingales depends only on its equivalence class. So, these results provide an alternative approach to the problems of characterization of the distribution of a continuous local martingale and its maximum, which were considered by L. C. G. Rogers and P. Vallois in the early 1990s.
Keywords: Skorokhod embedding problem, time-change, local max-level martingale, local submartingale, max-continuous random process, single jump processes, running maximum of a process.
@article{TVP_2020_65_4_a2,
     author = {A. A. Gushchin},
     title = {The joint law of a~max-continuous local submartingale and its maximum},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {693--709},
     year = {2020},
     volume = {65},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a2/}
}
TY  - JOUR
AU  - A. A. Gushchin
TI  - The joint law of a max-continuous local submartingale and its maximum
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 693
EP  - 709
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a2/
LA  - ru
ID  - TVP_2020_65_4_a2
ER  - 
%0 Journal Article
%A A. A. Gushchin
%T The joint law of a max-continuous local submartingale and its maximum
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 693-709
%V 65
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a2/
%G ru
%F TVP_2020_65_4_a2
A. A. Gushchin. The joint law of a max-continuous local submartingale and its maximum. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 693-709. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a2/

[1] D. Blackwell, L. E. Dubins, “A converse to the dominated convergence theorem”, Illinois J. Math., 7 (1963), 508–514 | MR | Zbl

[2] L. E. Dubins, D. Gilat, “On the distribution of maxima of martingales”, Proc. Amer. Math. Soc., 68:3 (1978), 337–338 | DOI | MR | Zbl

[3] J. Azéma, M. Yor, “Une solution simple au problème de Skorokhod”, Séminaire des probabilités XIII (Univ. Strasbourg, 1977/78), Lecture Notes in Math., 721, Springer, Berlin, 1979, 90–115 | DOI | MR | Zbl

[4] J. Azéma, M. Yor, “Le problème de Skorokhod: compléments à “Une solution simple au problème de Skorokhod””, Séminaire des probabilités XIII (Univ. Strasbourg, 1977/78), Lecture Notes in Math., 721, Springer, Berlin, 1979, 625–633 | DOI | MR | Zbl

[5] E. Perkins, “The Cereteli–Davis solution to the $H^1$-embedding problem and an optimal embedding in Brownian motion”, Seminar on stochastic processes, 1985 (Gainesville, FL, 1985), Progr. Probab. Statist., 12, Birkhäuser Boston, Boston, MA, 1986, 172–223 | DOI | MR | Zbl

[6] D. Gilat, I. Meilijson, “A simple proof of a theorem of Blackwell Dubins on the maximum of a uniformly integrable martingale”, Séminaire des probabilités XXII (Univ. Strasbourg), Lecture Notes in Math., 1321, Springer, Berlin, 1988, 214–216 | DOI | MR | Zbl

[7] R. P. Kertz, U. Rösler, “Martingales with given maxima and terminal distributions”, Israel J. Math., 69:2 (1990), 173–192 | DOI | MR | Zbl

[8] R. P. Kertz, U. Rösler, “Stochastic and convex orders and lattices of probability measures, with a martingale interpretation”, Israel J. Math., 77:1-2 (1992), 129–164 | DOI | MR | Zbl

[9] R. P. Kertz, U. Rösler, “Hyperbolic-concave functions and Hardy–Littlewood maximal functions”, Stochastic inequalities (Seattle, WA, 1991), IMS Lecture Notes Monogr. Ser., 22, Inst. Math. Statist., Hayward, CA, 1992, 196–210 | DOI | MR | Zbl

[10] L. C. G. Rogers, “The joint law of the maximum and terminal value of a martingale”, Probab. Theory Related Fields, 95:4 (1993), 451–466 | DOI | MR | Zbl

[11] P. Vallois, “Sur la loi du maximum et du temps local d'une martingale continue uniformément intégrable”, Proc. London Math. Soc. (3), 69:2 (1994), 399–427 | DOI | MR | Zbl

[12] D. G. Hobson, “The maximum maximum of a martingale”, Séminaire des probabilités XXXII (Univ. Strasbourg), Lecture Notes in Math., 1686, Springer, Berlin, 1998, 250–263 | DOI | MR | Zbl

[13] A. Nikeghbali, “A class of remarkable submartingales”, Stochastic Process. Appl., 116:6 (2006), 917–938 | DOI | MR | Zbl

[14] L. Carraro, N. El Karoui, J. Obłój, “On Azéma–Yor processes, their optimal properties and the Bachelier-drawdown equation”, Ann. Probab., 40:1 (2012), 372–400 | DOI | MR | Zbl

[15] A. M. G. Cox, J. Obłój, “On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale”, Stochastic Process. Appl., 125:8 (2015), 3280–3300 | DOI | MR | Zbl

[16] I. Monroe, “On embedding right continuous martingales in Brownian motion”, Ann. Math. Statist., 43:4 (1972), 1293–1311 | DOI | MR | Zbl

[17] A. A. Gushchin, M. A. Urusov, “Minimal embeddings of integrable processes in a Brownian motion”, Russian Math. Surveys, 74:5 (2019), 953–955 | DOI | MR | Zbl

[18] S. N. Cohen, R. J. Elliott, Stochastic calculus and applications, Probab. Appl., 2nd ed., Springer, Cham, 2015, xxiii+666 pp. | DOI | MR | Zbl

[19] A. A. Gushchin, Stochastic calculus for quantitative finance, ISTE Press, London; Elsevier Ltd., Oxford, 2015, xxi+185 pp. | MR | Zbl

[20] O. E. Barndorff-Nielsen, A. Shiryaev, Change of time and change of measure, Adv. Ser. Stat. Sci. Appl. Probab., 21, 2nd ed., World Sci. Publ., Hackensack, NJ, 2015, xviii+326 pp. | DOI | MR | Zbl

[21] A. A. Gushchin, “The joint law of terminal values of a nonnegative submartingale and its compensator”, Theory Probab. Appl., 62:2 (2018), 216–235 | DOI | DOI | MR | Zbl

[22] A. A. Gushchin, “Single jump filtrations and local martingales”, Mod. Stoch. Theory Appl., 7:2 (2020), 135–156 | MR

[23] C. Dellacherie, “Un exemple de la théorie générale des processus”, Séminaire des probabilités IV (Univ. Strasbourg, 1968/69), Lecture Notes in Math., 124, Springer, Berlin, 1970, 60–70 | MR | Zbl

[24] Ching Sung Chou, P.-A. Meyer, “Sur la représentation des martingales comme intégrales stochastiques dans les processus ponctuels”, Séminaire de probabilités IX, 2nde partie (Univ. Strasbourg, années univ. 1973/1974 et 1974/1975), Lecture Notes in Math., 465, Springer, Berlin, 1975, 226–236 | MR | Zbl

[25] M. Herdegen, S. Herrmann, “Single jump processes and strict local martingales”, Stochastic Process. Appl., 126:2 (2016), 337–359 | DOI | MR | Zbl

[26] A. A. Gushchin, M. A. Urusov, “Processes that can be embedded in a geometric Brownian motion”, Theory Probab. Appl., 60:2 (2016), 246–262 | DOI | DOI | MR | Zbl

[27] H. Hulley, J. Ruf, “Weak tail conditions for local martingales”, Ann. Probab., 47:3 (2019), 1811–1825 | DOI | MR | Zbl

[28] A. M. G. Cox, D. G. Hobson, “Skorokhod embeddings, minimality and non-centred target distributions”, Probab. Theory Related Fields, 135:3 (2006), 395–414 | DOI | MR | Zbl

[29] P. Vallois, “On the joint distribution of the supremum and terminal value of a uniformly integrable martingale”, Stochastic processes and optimal control (Friedrichroda, 1992), Stochastics Monogr., 7, Gordon and Breach, Montreux, 1993, 183–199 | MR | Zbl

[30] J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, Springer, Berlin, 1979, x+539 pp. | DOI | MR | Zbl