@article{TVP_2020_65_4_a2,
author = {A. A. Gushchin},
title = {The joint law of a~max-continuous local submartingale and its maximum},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {693--709},
year = {2020},
volume = {65},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a2/}
}
A. A. Gushchin. The joint law of a max-continuous local submartingale and its maximum. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 693-709. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a2/
[1] D. Blackwell, L. E. Dubins, “A converse to the dominated convergence theorem”, Illinois J. Math., 7 (1963), 508–514 | MR | Zbl
[2] L. E. Dubins, D. Gilat, “On the distribution of maxima of martingales”, Proc. Amer. Math. Soc., 68:3 (1978), 337–338 | DOI | MR | Zbl
[3] J. Azéma, M. Yor, “Une solution simple au problème de Skorokhod”, Séminaire des probabilités XIII (Univ. Strasbourg, 1977/78), Lecture Notes in Math., 721, Springer, Berlin, 1979, 90–115 | DOI | MR | Zbl
[4] J. Azéma, M. Yor, “Le problème de Skorokhod: compléments à “Une solution simple au problème de Skorokhod””, Séminaire des probabilités XIII (Univ. Strasbourg, 1977/78), Lecture Notes in Math., 721, Springer, Berlin, 1979, 625–633 | DOI | MR | Zbl
[5] E. Perkins, “The Cereteli–Davis solution to the $H^1$-embedding problem and an optimal embedding in Brownian motion”, Seminar on stochastic processes, 1985 (Gainesville, FL, 1985), Progr. Probab. Statist., 12, Birkhäuser Boston, Boston, MA, 1986, 172–223 | DOI | MR | Zbl
[6] D. Gilat, I. Meilijson, “A simple proof of a theorem of Blackwell Dubins on the maximum of a uniformly integrable martingale”, Séminaire des probabilités XXII (Univ. Strasbourg), Lecture Notes in Math., 1321, Springer, Berlin, 1988, 214–216 | DOI | MR | Zbl
[7] R. P. Kertz, U. Rösler, “Martingales with given maxima and terminal distributions”, Israel J. Math., 69:2 (1990), 173–192 | DOI | MR | Zbl
[8] R. P. Kertz, U. Rösler, “Stochastic and convex orders and lattices of probability measures, with a martingale interpretation”, Israel J. Math., 77:1-2 (1992), 129–164 | DOI | MR | Zbl
[9] R. P. Kertz, U. Rösler, “Hyperbolic-concave functions and Hardy–Littlewood maximal functions”, Stochastic inequalities (Seattle, WA, 1991), IMS Lecture Notes Monogr. Ser., 22, Inst. Math. Statist., Hayward, CA, 1992, 196–210 | DOI | MR | Zbl
[10] L. C. G. Rogers, “The joint law of the maximum and terminal value of a martingale”, Probab. Theory Related Fields, 95:4 (1993), 451–466 | DOI | MR | Zbl
[11] P. Vallois, “Sur la loi du maximum et du temps local d'une martingale continue uniformément intégrable”, Proc. London Math. Soc. (3), 69:2 (1994), 399–427 | DOI | MR | Zbl
[12] D. G. Hobson, “The maximum maximum of a martingale”, Séminaire des probabilités XXXII (Univ. Strasbourg), Lecture Notes in Math., 1686, Springer, Berlin, 1998, 250–263 | DOI | MR | Zbl
[13] A. Nikeghbali, “A class of remarkable submartingales”, Stochastic Process. Appl., 116:6 (2006), 917–938 | DOI | MR | Zbl
[14] L. Carraro, N. El Karoui, J. Obłój, “On Azéma–Yor processes, their optimal properties and the Bachelier-drawdown equation”, Ann. Probab., 40:1 (2012), 372–400 | DOI | MR | Zbl
[15] A. M. G. Cox, J. Obłój, “On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale”, Stochastic Process. Appl., 125:8 (2015), 3280–3300 | DOI | MR | Zbl
[16] I. Monroe, “On embedding right continuous martingales in Brownian motion”, Ann. Math. Statist., 43:4 (1972), 1293–1311 | DOI | MR | Zbl
[17] A. A. Gushchin, M. A. Urusov, “Minimal embeddings of integrable processes in a Brownian motion”, Russian Math. Surveys, 74:5 (2019), 953–955 | DOI | MR | Zbl
[18] S. N. Cohen, R. J. Elliott, Stochastic calculus and applications, Probab. Appl., 2nd ed., Springer, Cham, 2015, xxiii+666 pp. | DOI | MR | Zbl
[19] A. A. Gushchin, Stochastic calculus for quantitative finance, ISTE Press, London; Elsevier Ltd., Oxford, 2015, xxi+185 pp. | MR | Zbl
[20] O. E. Barndorff-Nielsen, A. Shiryaev, Change of time and change of measure, Adv. Ser. Stat. Sci. Appl. Probab., 21, 2nd ed., World Sci. Publ., Hackensack, NJ, 2015, xviii+326 pp. | DOI | MR | Zbl
[21] A. A. Gushchin, “The joint law of terminal values of a nonnegative submartingale and its compensator”, Theory Probab. Appl., 62:2 (2018), 216–235 | DOI | DOI | MR | Zbl
[22] A. A. Gushchin, “Single jump filtrations and local martingales”, Mod. Stoch. Theory Appl., 7:2 (2020), 135–156 | MR
[23] C. Dellacherie, “Un exemple de la théorie générale des processus”, Séminaire des probabilités IV (Univ. Strasbourg, 1968/69), Lecture Notes in Math., 124, Springer, Berlin, 1970, 60–70 | MR | Zbl
[24] Ching Sung Chou, P.-A. Meyer, “Sur la représentation des martingales comme intégrales stochastiques dans les processus ponctuels”, Séminaire de probabilités IX, 2nde partie (Univ. Strasbourg, années univ. 1973/1974 et 1974/1975), Lecture Notes in Math., 465, Springer, Berlin, 1975, 226–236 | MR | Zbl
[25] M. Herdegen, S. Herrmann, “Single jump processes and strict local martingales”, Stochastic Process. Appl., 126:2 (2016), 337–359 | DOI | MR | Zbl
[26] A. A. Gushchin, M. A. Urusov, “Processes that can be embedded in a geometric Brownian motion”, Theory Probab. Appl., 60:2 (2016), 246–262 | DOI | DOI | MR | Zbl
[27] H. Hulley, J. Ruf, “Weak tail conditions for local martingales”, Ann. Probab., 47:3 (2019), 1811–1825 | DOI | MR | Zbl
[28] A. M. G. Cox, D. G. Hobson, “Skorokhod embeddings, minimality and non-centred target distributions”, Probab. Theory Related Fields, 135:3 (2006), 395–414 | DOI | MR | Zbl
[29] P. Vallois, “On the joint distribution of the supremum and terminal value of a uniformly integrable martingale”, Stochastic processes and optimal control (Friedrichroda, 1992), Stochastics Monogr., 7, Gordon and Breach, Montreux, 1993, 183–199 | MR | Zbl
[30] J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, Springer, Berlin, 1979, x+539 pp. | DOI | MR | Zbl