Two-stage chi-square test and two-dimensional distributions of a~Bessel process
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 841-850

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sequential $r$-stage chi-square test. For $r=2$, we study the asymptotic properties of the error probabilities as a function of the sizes of the rectangular critical domain, which via the Bonferroni inequality makes it possible to derive asymptotic properties of the error probability for an arbitrary $r$. For this purpose, we obtain some properties of the Infeld function, whose derivation is of independent interest. Based on the results obtained, the asymptotic behavior of the tails of two-dimensional distributions of a Bessel process is found.
Keywords: sequential chi-square test, Bessel process.
@article{TVP_2020_65_4_a11,
     author = {M. P. Savelov},
     title = {Two-stage chi-square test and two-dimensional distributions of {a~Bessel} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {841--850},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/}
}
TY  - JOUR
AU  - M. P. Savelov
TI  - Two-stage chi-square test and two-dimensional distributions of a~Bessel process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 841
EP  - 850
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/
LA  - ru
ID  - TVP_2020_65_4_a11
ER  - 
%0 Journal Article
%A M. P. Savelov
%T Two-stage chi-square test and two-dimensional distributions of a~Bessel process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 841-850
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/
%G ru
%F TVP_2020_65_4_a11
M. P. Savelov. Two-stage chi-square test and two-dimensional distributions of a~Bessel process. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 841-850. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/