Two-stage chi-square test and two-dimensional distributions of a Bessel process
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 841-850 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the sequential $r$-stage chi-square test. For $r=2$, we study the asymptotic properties of the error probabilities as a function of the sizes of the rectangular critical domain, which via the Bonferroni inequality makes it possible to derive asymptotic properties of the error probability for an arbitrary $r$. For this purpose, we obtain some properties of the Infeld function, whose derivation is of independent interest. Based on the results obtained, the asymptotic behavior of the tails of two-dimensional distributions of a Bessel process is found.
Keywords: sequential chi-square test, Bessel process.
@article{TVP_2020_65_4_a11,
     author = {M. P. Savelov},
     title = {Two-stage chi-square test and two-dimensional distributions of {a~Bessel} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {841--850},
     year = {2020},
     volume = {65},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/}
}
TY  - JOUR
AU  - M. P. Savelov
TI  - Two-stage chi-square test and two-dimensional distributions of a Bessel process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 841
EP  - 850
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/
LA  - ru
ID  - TVP_2020_65_4_a11
ER  - 
%0 Journal Article
%A M. P. Savelov
%T Two-stage chi-square test and two-dimensional distributions of a Bessel process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 841-850
%V 65
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/
%G ru
%F TVP_2020_65_4_a11
M. P. Savelov. Two-stage chi-square test and two-dimensional distributions of a Bessel process. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 841-850. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/

[1] V. K. Zakharov, O. V. Sarmanov, B. A. Sevast'yanov, “Sequential $\chi^2$ criteria”, Math. USSR-Sb., 8:3 (1969), 419–435 | DOI | MR | Zbl

[2] B. I. Selivanov, V. P. Chistyakov, “Multivariate chi-square distribution for a nonhomogeneous polynomial scheme”, Discrete Math. Appl., 8:3 (1998), 263–273 | DOI | DOI | MR | Zbl

[3] A. P. Germogenov, A. F. Ronzhin, “A sequential chi-square test”, Theory Probab. Appl., 29:2 (1985), 397–403 | DOI | MR | Zbl

[4] S. Kh. Tumanyan, “Asymptotic distribution of the $\chi^2$ criterion when the number of observations and the number of groups increase simultaneously”, Theory Probab. Appl., 1:1 (1956), 117–131 | DOI | MR | Zbl

[5] N. N. Lebedev, Special functions and their applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965, xii+308 pp. | MR | MR | Zbl | Zbl

[6] A. M. Zubkov, M. P. Savelov, “Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process”, Discrete Math. Appl., 27:6 (2017), 405–411 | DOI | DOI | MR | Zbl

[7] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl

[8] M. P. Savelov, Sequential two-fold Pearson chi-squared test and tails of the Bessel process distributions, 2017, arXiv: 1711.01366