Two-stage chi-square test and two-dimensional distributions of a~Bessel process
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 841-850
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the sequential $r$-stage chi-square test. For $r=2$, we study the
asymptotic properties of the error probabilities as a function of the sizes
of the rectangular critical domain, which via the Bonferroni inequality makes
it possible to derive asymptotic properties of the error probability for an
arbitrary $r$. For this purpose, we obtain some properties of the Infeld function,
whose derivation is of independent interest. Based on the
results obtained, the asymptotic behavior of the tails of two-dimensional
distributions of a Bessel process is found.
Keywords:
sequential chi-square test, Bessel process.
@article{TVP_2020_65_4_a11,
author = {M. P. Savelov},
title = {Two-stage chi-square test and two-dimensional distributions of {a~Bessel} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {841--850},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/}
}
TY - JOUR AU - M. P. Savelov TI - Two-stage chi-square test and two-dimensional distributions of a~Bessel process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 841 EP - 850 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/ LA - ru ID - TVP_2020_65_4_a11 ER -
M. P. Savelov. Two-stage chi-square test and two-dimensional distributions of a~Bessel process. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 841-850. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a11/