Convergence of certain classes of random flights in the Kantorovich metric
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 829-840
Cet article a éte moissonné depuis la source Math-Net.Ru
A random walk of a particle in $\mathbf{R}^d$ is considered. The weak convergence of various transformations of trajectories of random flights with Poisson switching times was studied by Davydov and Konakov in [Random walks in nonhomogeneous Poisson environment, in Modern Problems of Stochastic Analysis and Statistics, Springer, 2017, pp. 3–24], who also built a diffusion approximation of the process of random flights. The goal of the present paper is to prove a stronger convergence with respect to the Kantorovich distance. Three types of transformations are considered. The cases of exponential and superexponential growth of the switching time transformation function are quite simple—in these cases the required result follows from the fact that the limit processes lie within the unit ball. In the case of a power-like growth of the transformation function, the convergence follows from combinatorial arguments and properties of the Kantorovich metric.
Keywords:
Kantorovich metric, random walk of a particle, convergence of transformations of paths of random flights, Doob's maximal inequality.
@article{TVP_2020_65_4_a10,
author = {V. D. Konakov and A. R. Falaleev},
title = {Convergence of certain classes of random flights in the {Kantorovich} metric},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {829--840},
year = {2020},
volume = {65},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a10/}
}
TY - JOUR AU - V. D. Konakov AU - A. R. Falaleev TI - Convergence of certain classes of random flights in the Kantorovich metric JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 829 EP - 840 VL - 65 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a10/ LA - ru ID - TVP_2020_65_4_a10 ER -
V. D. Konakov; A. R. Falaleev. Convergence of certain classes of random flights in the Kantorovich metric. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 829-840. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a10/
[1] C. Villani, Optimal transport, old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, 635 pp. | DOI | MR | Zbl
[2] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl
[3] Y. Davydov, V. Konakov, “Random walks in nonhomogeneous Poisson environment”, Modern problems of stochastic analysis and statistics, Selected contributions in honor of Valentin Konakov's 70th birthday (Moscow, 2016), Springer Proc. Math. Stat., 208, Springer, Cham, 2017, 3–24 | DOI | MR | Zbl
[4] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, 3rd ed., Springer-Verlag, Berlin, 1999, xiv+602 pp. | DOI | MR | Zbl