Subcritical branching processes in random environment with
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 671-692
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a subcritical branching process in an independent and identically distributed (i.i.d.)  random environment,
where one immigrant arrives at each generation. We consider the event
$\mathcal{A}_{i}(n)$ in which all individuals alive at time $n$ are descendants
of the immigrant, who joined the population at time $i$, and investigate the
asymptotic probability of this extreme event for $n\to \infty$ when
$i$ is fixed, the difference $n-i$ is fixed, or $\min
(i,n-i)\to \infty$. To deduce the desired asymptotics we establish
some limit theorems for random walks conditioned to be nonnegative or
negative on $[0,n]$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
branching process, random environment, conditioned random walk.
Mots-clés : immigration
                    
                  
                
                
                Mots-clés : immigration
@article{TVP_2020_65_4_a1,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Subcritical branching processes in random environment with},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {671--692},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a1/}
}
                      
                      
                    TY - JOUR AU - V. A. Vatutin AU - E. E. D'yakonova TI - Subcritical branching processes in random environment with JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 671 EP - 692 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a1/ LA - ru ID - TVP_2020_65_4_a1 ER -
V. A. Vatutin; E. E. D'yakonova. Subcritical branching processes in random environment with. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 671-692. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a1/
