Subcritical branching processes in random environment with
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 671-692

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a subcritical branching process in an independent and identically distributed (i.i.d.) random environment, where one immigrant arrives at each generation. We consider the event $\mathcal{A}_{i}(n)$ in which all individuals alive at time $n$ are descendants of the immigrant, who joined the population at time $i$, and investigate the asymptotic probability of this extreme event for $n\to \infty$ when $i$ is fixed, the difference $n-i$ is fixed, or $\min (i,n-i)\to \infty$. To deduce the desired asymptotics we establish some limit theorems for random walks conditioned to be nonnegative or negative on $[0,n]$.
Keywords: branching process, random environment, conditioned random walk.
Mots-clés : immigration
@article{TVP_2020_65_4_a1,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Subcritical branching processes in random environment with},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {671--692},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Subcritical branching processes in random environment with
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 671
EP  - 692
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a1/
LA  - ru
ID  - TVP_2020_65_4_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Subcritical branching processes in random environment with
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 671-692
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a1/
%G ru
%F TVP_2020_65_4_a1
V. A. Vatutin; E. E. D'yakonova. Subcritical branching processes in random environment with. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 671-692. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a1/