Extension of the invariance principle for compound renewal processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 651-670

Voir la notice de l'article provenant de la source Math-Net.Ru

The invariance principle for compound renewal processes is extended (in the sense of asymptotic equivalence) to the zone of moderately large and small deviations. It is assumed that the vector $(\tau,\zeta)$, which “governs” the process, satisfies certain moment conditions (for example, the Cramér condition), and its components $\tau$ and $\zeta$ are either independent or linearly dependent. This extension holds, in particular, for random walks.
Keywords: compound renewal process, invariance principle, large deviations, small deviations, random walk.
@article{TVP_2020_65_4_a0,
     author = {A. A. Borovkov},
     title = {Extension of the invariance principle for compound renewal processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {651--670},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a0/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Extension of the invariance principle for compound renewal processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 651
EP  - 670
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a0/
LA  - ru
ID  - TVP_2020_65_4_a0
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Extension of the invariance principle for compound renewal processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 651-670
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a0/
%G ru
%F TVP_2020_65_4_a0
A. A. Borovkov. Extension of the invariance principle for compound renewal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 651-670. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a0/