Extension of the invariance principle for compound renewal processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 651-670
Voir la notice de l'article provenant de la source Math-Net.Ru
The invariance principle for compound renewal processes is extended (in the
sense of asymptotic equivalence) to the zone of moderately large and small
deviations. It is assumed that the vector $(\tau,\zeta)$, which “governs” the
process, satisfies certain moment conditions (for example, the Cramér
condition), and its components $\tau$ and $\zeta$ are either independent or
linearly dependent. This extension holds, in particular, for random walks.
Keywords:
compound renewal process, invariance principle, large deviations, small deviations, random walk.
@article{TVP_2020_65_4_a0,
author = {A. A. Borovkov},
title = {Extension of the invariance principle for compound renewal processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {651--670},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a0/}
}
A. A. Borovkov. Extension of the invariance principle for compound renewal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 651-670. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a0/