@article{TVP_2020_65_4_a0,
author = {A. A. Borovkov},
title = {Extension of the invariance principle for compound renewal processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {651--670},
year = {2020},
volume = {65},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a0/}
}
A. A. Borovkov. Extension of the invariance principle for compound renewal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 4, pp. 651-670. http://geodesic.mathdoc.fr/item/TVP_2020_65_4_a0/
[1] M. Csörgő, L. Horváth, J. Steinebach, “Invariance principles for renewal processes”, Ann. Probab., 15:4 (1987), 1441–1460 | DOI | MR | Zbl
[2] J. Steinebach, “Invariance principles for renewal processes when only moments of low order exist”, J. Multivariate Anal., 26:2 (1988), 169–183 | DOI | MR | Zbl
[3] A. A. Borovkov, “Functional limit theorems for compound renewal processes”, Siberian Math. J., 60:1 (2019), 27–40 | DOI | DOI | MR | Zbl
[4] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV's and the sample DF. I”, Z. Wahrscheinlichkeitstheorie und verw. Gebiete, 32 (1975), 111–131 | DOI | MR | Zbl
[5] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV's and the sample DF. II”, Z. Wahrscheinlichkeitstheorie und verw. Gebiete, 34 (1976), 33–58 | DOI | MR | Zbl
[6] M. Csörgő, P. Deheuvels, L. Horváth, “An approximation of stopped sums with applications in queueing theory”, Adv. in Appl. Probab., 19:3 (1987), 674–690 | DOI | MR | Zbl
[7] J. Steinebach, “On the optimality of strong approximation rates for compound renewal processes”, Statist. Probab. Lett., 6:4 (1988), 263–267 | DOI | MR | Zbl
[8] A. A. Borovkov, “Moderate large deviations principles for trajectories of compound renewal processes”, Theory Probab. Appl., 64:2 (2019), 324–333 | DOI | DOI | MR | Zbl
[9] A. A. Borovkov, Probability theory, Universitext, Springer, London, 2013, xxviii+733 pp. | DOI | MR | Zbl
[10] A. A. Borovkov, “Large deviation principles in boundary problems for compound renewal processes”, Siberian Math. J., 57:3 (2016), 442–469 | DOI | DOI | MR | Zbl
[11] A. A. Borovkov, “Analysis of large deviations in boundary-value problems with arbitrary boundaries. I, II”, Select. Transl. Math. Statist. and Probability, 6, Amer. Math. Soc., Providence, RI, 1966, 218–256, 257–274 | MR | MR | Zbl
[12] A. A. Borovkov, Asymptotic analysis of random walks. Light-tailed distributions, Encyclopedia Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020, 450 pp. | Zbl | Zbl
[13] B. A. Rogozin, “Distribution of the maximum of a process with independent increments”, Siberian Math. J., 10:6 (1969), 989–1010 | DOI | MR | Zbl
[14] A. A. Mogul'skii, “Small deviations in a space of trajectories”, Theory Probab. Appl., 19:1 (1975), 726–736 | DOI | MR | Zbl
[15] A. A. Mogul'skii, “Fourier method for determining the asymptotic behavior of small deviations of a Wiener process”, Siberian Math. J., 23:3 (1983), 420–431 | DOI | MR | Zbl