Mots-clés : moments, Stieltjes moment problem, Carleman's condition, condition (L).
@article{TVP_2020_65_3_a9,
author = {J. M. Stoyanov and G. D. Lin and P. Kopanov},
title = {New checkable conditions for moment determinacy of probability distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {634--648},
year = {2020},
volume = {65},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a9/}
}
TY - JOUR AU - J. M. Stoyanov AU - G. D. Lin AU - P. Kopanov TI - New checkable conditions for moment determinacy of probability distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 634 EP - 648 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a9/ LA - ru ID - TVP_2020_65_3_a9 ER -
J. M. Stoyanov; G. D. Lin; P. Kopanov. New checkable conditions for moment determinacy of probability distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 634-648. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a9/
[1] N. I. Akhieser, The classical problem of moments and some related questions of analysis, Oliver Boyd, Edinburgh, 1965, x+253 pp. | MR | MR | Zbl | Zbl
[2] C. Berg, Yang Chen, M. E. H. Ismail, “Small eigenvalues of large Hankel matrices: the indeterminate case”, Math. Scand., 91:1 (2002), 67–81 | DOI | MR | Zbl
[3] M. de Jeu, “Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights”, Ann. Probab., 31:3 (2003), 1205–1227 | DOI | MR | Zbl
[4] L. B. Klebanov, S. T. Mkrtchyan, “Otsenka blizosti raspredelenii v terminakh sovpadayuschikh momentov”, Problemy ustoichivosti stokhasticheskikh modelei, Tr. sem. (Palanga, 1979), VNIISI, M., 1980, 64–72 ; L. B. Klebanov, S. T. Mkrtchyan, “Estimation of the closeness of distributions in terms of identical moments”, J. Soviet Math., 32 (1986), 54–60 ; “Estimating the proximity of distributions in terms of coinciding moments”, Sel. Transl. Math. Stat. Probab., 16, Amer. Math. Soc., Providence, RI, 1985, 1–10 | MR | Zbl | DOI | MR | Zbl
[5] Gwo Dong Lin, “On the moment problems”, Statist. Probab. Lett., 35:1 (1997), 85–90 ; “Erratum”, 50:2 (2000), 205 | DOI | MR | Zbl | DOI | MR
[6] Gwo Dong Lin, “Recent developments on the moment problem”, J. Stat. Distrib. Appl., 4 (2017), 5, 17 pp. | DOI | Zbl
[7] K. V. Lykov, “Any random variable with finite moments is a sum of two variables with determinate moment problem”, Theory Probab. Appl., 62:4 (2018), 632–639 | DOI | DOI | MR | Zbl
[8] A. G. Pakes, “Remarks on converse Carleman and Krein criteria for the classical moment problem”, J. Aust. Math. Soc., 71:1 (2001), 81–104 | DOI | MR | Zbl
[9] H. L. Pedersen, “On Krein's theorem for indeterminacy of the classical moment problem”, J. Approx. Theory, 95:1 (1998), 90–100 | DOI | MR | Zbl
[10] K. Schmüdgen, The moment problem, Grad. Texts in Math., 277, Springer, Cham, 2017, xii+535 pp. | DOI | MR | Zbl
[11] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl
[12] J. A. Shohat, J. D. Tamarkin, The problem of moments, Amer. Math. Soc. Math. Surv., 1, Amer. Math. Soc., New York, 1943, xiv+140 pp. | MR | Zbl
[13] E. V. Slud, “The moment problem for polynomial forms in normal random variables”, Ann. Probab., 21:4 (1993), 2200–2214 | DOI | MR | Zbl
[14] J. Stoyanov, “Krein condition in probabilistic moment problems”, Bernoulli, 6:5 (2000), 939–949 | DOI | MR | Zbl
[15] J. M. Stoyanov, Counterexamples in probability, 3rd rev. ed., Dover Publications, Inc., Mineola, NY, 2013, xxx+368 pp. | MR | Zbl | Zbl
[16] J. Stoyanov, G. D. Lin, “Hardy's condition in the moment problem for probability distributions”, Teoriya veroyatn. i ee primen., 57:4 (2012), 811–820 ; Theory Probab. Appl., 57:4 (2013), 699–708 | DOI | Zbl | DOI | MR