New checkable conditions for moment determinacy of probability distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 634-648 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We have analyzed some conditions which are essentially involved in deciding whether or not a probability distribution is unique (moment-determinate) or nonunique (moment-indeterminate) by its moments. We suggest new conditions concerning both absolutely continuous and discrete distributions. By using the new conditions, which are easily checkable, we either establish new results or extend previous ones in both the Hamburger case (distributions on the whole real line) and the Stieltjes case (distributions on the positive half-line). Specific examples illustrate the results as well as the relationship between the new conditions and previously available conditions.
Keywords: probability distributions, Hamburger moment problem, Krein's condition
Mots-clés : moments, Stieltjes moment problem, Carleman's condition, condition (L).
@article{TVP_2020_65_3_a9,
     author = {J. M. Stoyanov and G. D. Lin and P. Kopanov},
     title = {New checkable conditions for moment determinacy of probability distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {634--648},
     year = {2020},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a9/}
}
TY  - JOUR
AU  - J. M. Stoyanov
AU  - G. D. Lin
AU  - P. Kopanov
TI  - New checkable conditions for moment determinacy of probability distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 634
EP  - 648
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a9/
LA  - ru
ID  - TVP_2020_65_3_a9
ER  - 
%0 Journal Article
%A J. M. Stoyanov
%A G. D. Lin
%A P. Kopanov
%T New checkable conditions for moment determinacy of probability distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 634-648
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a9/
%G ru
%F TVP_2020_65_3_a9
J. M. Stoyanov; G. D. Lin; P. Kopanov. New checkable conditions for moment determinacy of probability distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 634-648. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a9/

[1] N. I. Akhieser, The classical problem of moments and some related questions of analysis, Oliver Boyd, Edinburgh, 1965, x+253 pp. | MR | MR | Zbl | Zbl

[2] C. Berg, Yang Chen, M. E. H. Ismail, “Small eigenvalues of large Hankel matrices: the indeterminate case”, Math. Scand., 91:1 (2002), 67–81 | DOI | MR | Zbl

[3] M. de Jeu, “Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights”, Ann. Probab., 31:3 (2003), 1205–1227 | DOI | MR | Zbl

[4] L. B. Klebanov, S. T. Mkrtchyan, “Otsenka blizosti raspredelenii v terminakh sovpadayuschikh momentov”, Problemy ustoichivosti stokhasticheskikh modelei, Tr. sem. (Palanga, 1979), VNIISI, M., 1980, 64–72 ; L. B. Klebanov, S. T. Mkrtchyan, “Estimation of the closeness of distributions in terms of identical moments”, J. Soviet Math., 32 (1986), 54–60 ; “Estimating the proximity of distributions in terms of coinciding moments”, Sel. Transl. Math. Stat. Probab., 16, Amer. Math. Soc., Providence, RI, 1985, 1–10 | MR | Zbl | DOI | MR | Zbl

[5] Gwo Dong Lin, “On the moment problems”, Statist. Probab. Lett., 35:1 (1997), 85–90 ; “Erratum”, 50:2 (2000), 205 | DOI | MR | Zbl | DOI | MR

[6] Gwo Dong Lin, “Recent developments on the moment problem”, J. Stat. Distrib. Appl., 4 (2017), 5, 17 pp. | DOI | Zbl

[7] K. V. Lykov, “Any random variable with finite moments is a sum of two variables with determinate moment problem”, Theory Probab. Appl., 62:4 (2018), 632–639 | DOI | DOI | MR | Zbl

[8] A. G. Pakes, “Remarks on converse Carleman and Krein criteria for the classical moment problem”, J. Aust. Math. Soc., 71:1 (2001), 81–104 | DOI | MR | Zbl

[9] H. L. Pedersen, “On Krein's theorem for indeterminacy of the classical moment problem”, J. Approx. Theory, 95:1 (1998), 90–100 | DOI | MR | Zbl

[10] K. Schmüdgen, The moment problem, Grad. Texts in Math., 277, Springer, Cham, 2017, xii+535 pp. | DOI | MR | Zbl

[11] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl

[12] J. A. Shohat, J. D. Tamarkin, The problem of moments, Amer. Math. Soc. Math. Surv., 1, Amer. Math. Soc., New York, 1943, xiv+140 pp. | MR | Zbl

[13] E. V. Slud, “The moment problem for polynomial forms in normal random variables”, Ann. Probab., 21:4 (1993), 2200–2214 | DOI | MR | Zbl

[14] J. Stoyanov, “Krein condition in probabilistic moment problems”, Bernoulli, 6:5 (2000), 939–949 | DOI | MR | Zbl

[15] J. M. Stoyanov, Counterexamples in probability, 3rd rev. ed., Dover Publications, Inc., Mineola, NY, 2013, xxx+368 pp. | MR | Zbl | Zbl

[16] J. Stoyanov, G. D. Lin, “Hardy's condition in the moment problem for probability distributions”, Teoriya veroyatn. i ee primen., 57:4 (2012), 811–820 ; Theory Probab. Appl., 57:4 (2013), 699–708 | DOI | Zbl | DOI | MR