Indetermined moment problems related to $q$-functional equations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 617-633
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For $q\in (0,1)$, $p_1,p_2,p\in \mathbb{R}_+$, we characterize all the solutions
of the $q$-functional equations
$(1+p_2q^{1/2}x)f(qx)=q^{\beta-1/2}(x+p_1q^{-1/2})f(x)$ and $f(qx)=q^{\beta-
1}(x^2+p^2q^{-1})f(x)$, $x>0$, $\beta\in \mathbb{R}$, and we also show that
these solutions solve corresponding indetermined moment problems.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
moment problems, $q$-functional equations, log-normal density.
                    
                  
                
                
                @article{TVP_2020_65_3_a8,
     author = {M. L\'opez-Garc{\'\i}a},
     title = {Indetermined moment problems related to $q$-functional equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {617--633},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a8/}
}
                      
                      
                    M. López-García. Indetermined moment problems related to $q$-functional equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 617-633. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a8/
