@article{TVP_2020_65_3_a8,
author = {M. L\'opez-Garc{\'\i}a},
title = {Indetermined moment problems related to $q$-functional equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {617--633},
year = {2020},
volume = {65},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a8/}
}
M. López-García. Indetermined moment problems related to $q$-functional equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 617-633. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a8/
[1] R. Arratia, L. Goldstein, F. Kochman, “Size bias for one and all”, Probab. Surv., 16 (2019), 1–61 | DOI | MR | Zbl
[2] J. R. Cannon, The one-dimensional heat equation, Encyclopedia Math. Appl., 23, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984, xxv+483 pp. | DOI | MR | Zbl
[3] G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia Math. Appl., 35, Cambridge Univ. Press, Cambridge, 1990, xx+287 pp. | MR | Zbl
[4] R. Gómez, M. López-García, “A family of heat functions as solutions of indeterminate moment problems”, Int. J. Math. Math. Sci., 2007, 41526, 11 pp. | DOI | MR | Zbl
[5] M. López-García, “Characterization of solutions to the log-normal moment problem”, Teoriya veroyatn. i ee primen., 55:2 (2010), 387–391 ; Theory Probab. Appl., 55:2 (2011), 303–307 | DOI | MR | Zbl | DOI
[6] M. López-García, “Characterization of solutions to the Stieltjes–Wigert moment problem”, Statist. Probab. Lett., 79:10 (2009), 1337–1342 | DOI | MR | Zbl
[7] M. López-García, “Characterization of distributions with the length-bias scaling property”, Electron. Commun. Probab., 14 (2009), 186–191 | DOI | MR | Zbl