Indetermined moment problems related to $q$-functional equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 617-633 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For $q\in (0,1)$, $p_1,p_2,p\in \mathbb{R}_+$, we characterize all the solutions of the $q$-functional equations $(1+p_2q^{1/2}x)f(qx)=q^{\beta-1/2}(x+p_1q^{-1/2})f(x)$ and $f(qx)=q^{\beta- 1}(x^2+p^2q^{-1})f(x)$, $x>0$, $\beta\in \mathbb{R}$, and we also show that these solutions solve corresponding indetermined moment problems.
Keywords: moment problems, $q$-functional equations, log-normal density.
@article{TVP_2020_65_3_a8,
     author = {M. L\'opez-Garc{\'\i}a},
     title = {Indetermined moment problems related to $q$-functional equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {617--633},
     year = {2020},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a8/}
}
TY  - JOUR
AU  - M. López-García
TI  - Indetermined moment problems related to $q$-functional equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 617
EP  - 633
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a8/
LA  - ru
ID  - TVP_2020_65_3_a8
ER  - 
%0 Journal Article
%A M. López-García
%T Indetermined moment problems related to $q$-functional equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 617-633
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a8/
%G ru
%F TVP_2020_65_3_a8
M. López-García. Indetermined moment problems related to $q$-functional equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 617-633. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a8/

[1] R. Arratia, L. Goldstein, F. Kochman, “Size bias for one and all”, Probab. Surv., 16 (2019), 1–61 | DOI | MR | Zbl

[2] J. R. Cannon, The one-dimensional heat equation, Encyclopedia Math. Appl., 23, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984, xxv+483 pp. | DOI | MR | Zbl

[3] G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia Math. Appl., 35, Cambridge Univ. Press, Cambridge, 1990, xx+287 pp. | MR | Zbl

[4] R. Gómez, M. López-García, “A family of heat functions as solutions of indeterminate moment problems”, Int. J. Math. Math. Sci., 2007, 41526, 11 pp. | DOI | MR | Zbl

[5] M. López-García, “Characterization of solutions to the log-normal moment problem”, Teoriya veroyatn. i ee primen., 55:2 (2010), 387–391 ; Theory Probab. Appl., 55:2 (2011), 303–307 | DOI | MR | Zbl | DOI

[6] M. López-García, “Characterization of solutions to the Stieltjes–Wigert moment problem”, Statist. Probab. Lett., 79:10 (2009), 1337–1342 | DOI | MR | Zbl

[7] M. López-García, “Characterization of distributions with the length-bias scaling property”, Electron. Commun. Probab., 14 (2009), 186–191 | DOI | MR | Zbl