On the sub-Gaussianity of the $r$-correlograms
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 602-616 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we show that the centered relay correlation function is a sub-Gaussian random variable. This is done by a careful analysis of its Laplace transform and by estimating the sub-Gaussian standard of the $r$-correlograms.
Keywords: relay correlogram function, sub-Gaussian standard, stationary Gaussian process.
Mots-clés : sub-Gaussian random variables, Laplace transform
@article{TVP_2020_65_3_a7,
     author = {R. Giuliano and M. Ord\'o\~nez Cabrera and A. Volodin},
     title = {On the {sub-Gaussianity} of the $r$-correlograms},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {602--616},
     year = {2020},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a7/}
}
TY  - JOUR
AU  - R. Giuliano
AU  - M. Ordóñez Cabrera
AU  - A. Volodin
TI  - On the sub-Gaussianity of the $r$-correlograms
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 602
EP  - 616
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a7/
LA  - ru
ID  - TVP_2020_65_3_a7
ER  - 
%0 Journal Article
%A R. Giuliano
%A M. Ordóñez Cabrera
%A A. Volodin
%T On the sub-Gaussianity of the $r$-correlograms
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 602-616
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a7/
%G ru
%F TVP_2020_65_3_a7
R. Giuliano; M. Ordóñez Cabrera; A. Volodin. On the sub-Gaussianity of the $r$-correlograms. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 602-616. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a7/

[1] S. M. Ross, Introduction to probability models, 11th ed., Elsevier/Academic Press, Amsterdam, 2014, xvi+767 pp. | MR | Zbl

[2] P. J. Brockwell, R. A. Davis, Time series: theory and methods, Springer Ser. Statist., Reprint of the 2nd ed., Springer, New York, 2013, xvi+577 pp. | DOI | MR | Zbl

[3] V. V. Buldygin, Yu. V. Kozachenko, Metric characterization of random variables and random processes, Transl. Math. Monogr., 188, Amer. Math. Soc., Providence, RI, 2000, xii+257 pp. | MR | Zbl | Zbl

[4] A. M. Yaglom, Correlation theory of stationary and related random functions, v. 1, 2, Springer Ser. Statist., Springer-Verlag, New York, 1987, xiv+526 pp., x+258 pp. | MR | MR | Zbl

[5] J. P. Kahane, “Propriétés locales des fonctions à séries de Fourier aléatoires”, Studia Math., 19:1 (1960), 1–25 | DOI | MR | Zbl

[6] A. Castellucci, $\phi$-Subgaussian random processes: properties and their applications, Thesis (Ph.D.), Univ. Pisa, 2008, 75 pp. https://etd.adm.unipi.it/theses/available/etd-02092008-223901/