@article{TVP_2020_65_3_a6,
author = {M. du Roy de Chaumaray},
title = {Sharp large deviations for the drift parameter of the explosive {Cox{\textendash}Ingersoll{\textendash}Ross} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {583--601},
year = {2020},
volume = {65},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a6/}
}
TY - JOUR AU - M. du Roy de Chaumaray TI - Sharp large deviations for the drift parameter of the explosive Cox–Ingersoll–Ross process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 583 EP - 601 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a6/ LA - ru ID - TVP_2020_65_3_a6 ER -
M. du Roy de Chaumaray. Sharp large deviations for the drift parameter of the explosive Cox–Ingersoll–Ross process. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 583-601. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a6/
[1] M. Ben Alaya, A. Kebaier, “Parameter estimation for the square-root diffusions: ergodic and nonergodic cases”, Stoch. Models, 28:4 (2012), 609–634 | DOI | MR | Zbl
[2] M. Ben Alaya, A. Kebaier, “Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions”, Stoch. Anal. Appl., 31:4 (2013), 552–573 | DOI | MR | Zbl
[3] B. Bercu, L. Coutin, N. Savy, “Sharp large deviations for the non-stationary Ornstein–Uhlenbeck process”, Stochastic Process. Appl., 122:10 (2012), 3393–3424 | DOI | MR | Zbl
[4] B. Bercu, A. Richou, “Large deviations for the Ornstein–Uhlenbeck process with shift”, Adv. in Appl. Probab., 47:3 (2015), 880–901 | DOI | MR | Zbl
[5] B. Bercu, A. Rouault, “Sharp large deviations for the Ornstein–Uhlenbeck process”, Teoriya veroyatn. i ee primen., 46:1 (2001), 74–93 ; Theory Probab. Appl., 46:1 (2002), 1–19 | DOI | MR | Zbl | DOI
[6] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Appl. Math. (N. Y.), 38, 2nd ed., Springer-Verlag, New York, 1998, xvi+396 pp. | DOI | MR | Zbl
[7] M. du Roy de Chaumaray, “Large deviations for the squared radial Ornstein–Uhlenbeck process”, Teoriya veroyatn. i ee primen., 61:3 (2016), 509–546 ; Theory Probab. Appl., 61:3 (2017), 408–441 | DOI | MR | Zbl | DOI
[8] Yu. A. Kutoyants, Statistical inference for ergodic diffusion processes, Springer Ser. Statist., Springer-Verlag London, Ltd., London, 2004, xiv+481 pp. | DOI | MR | Zbl
[9] D. Lamberton, B. Lapeyre, Introduction au calcul stochastique appliqué à la finance, 2ème éd., Ellipses Édition Marketing, Paris, 1997, 176 pp. | MR | Zbl
[10] L. Overbeck, “Estimation for continuous branching processes”, Scand. J. Statist., 25:1 (1998), 111–126 | DOI | MR | Zbl
[11] M. Zani, “Large deviations for squared radial Ornstein–Uhlenbeck processes”, Stochastic Process. Appl., 102:1 (2002), 25–42 | DOI | MR | Zbl