Sharp large deviations for the drift parameter of the explosive Cox–Ingersoll–Ross process
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 583-601 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an explosive Cox–Ingersoll–Ross process. We establish a sharp large deviation principle for the maximum likelihood estimator of its drift parameter.
Keywords: CIR process, parameters estimation, large deviations, maximum likelihood estimator.
@article{TVP_2020_65_3_a6,
     author = {M. du Roy de Chaumaray},
     title = {Sharp large deviations for the drift parameter of the explosive {Cox{\textendash}Ingersoll{\textendash}Ross} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {583--601},
     year = {2020},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a6/}
}
TY  - JOUR
AU  - M. du Roy de Chaumaray
TI  - Sharp large deviations for the drift parameter of the explosive Cox–Ingersoll–Ross process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 583
EP  - 601
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a6/
LA  - ru
ID  - TVP_2020_65_3_a6
ER  - 
%0 Journal Article
%A M. du Roy de Chaumaray
%T Sharp large deviations for the drift parameter of the explosive Cox–Ingersoll–Ross process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 583-601
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a6/
%G ru
%F TVP_2020_65_3_a6
M. du Roy de Chaumaray. Sharp large deviations for the drift parameter of the explosive Cox–Ingersoll–Ross process. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 583-601. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a6/

[1] M. Ben Alaya, A. Kebaier, “Parameter estimation for the square-root diffusions: ergodic and nonergodic cases”, Stoch. Models, 28:4 (2012), 609–634 | DOI | MR | Zbl

[2] M. Ben Alaya, A. Kebaier, “Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions”, Stoch. Anal. Appl., 31:4 (2013), 552–573 | DOI | MR | Zbl

[3] B. Bercu, L. Coutin, N. Savy, “Sharp large deviations for the non-stationary Ornstein–Uhlenbeck process”, Stochastic Process. Appl., 122:10 (2012), 3393–3424 | DOI | MR | Zbl

[4] B. Bercu, A. Richou, “Large deviations for the Ornstein–Uhlenbeck process with shift”, Adv. in Appl. Probab., 47:3 (2015), 880–901 | DOI | MR | Zbl

[5] B. Bercu, A. Rouault, “Sharp large deviations for the Ornstein–Uhlenbeck process”, Teoriya veroyatn. i ee primen., 46:1 (2001), 74–93 ; Theory Probab. Appl., 46:1 (2002), 1–19 | DOI | MR | Zbl | DOI

[6] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Appl. Math. (N. Y.), 38, 2nd ed., Springer-Verlag, New York, 1998, xvi+396 pp. | DOI | MR | Zbl

[7] M. du Roy de Chaumaray, “Large deviations for the squared radial Ornstein–Uhlenbeck process”, Teoriya veroyatn. i ee primen., 61:3 (2016), 509–546 ; Theory Probab. Appl., 61:3 (2017), 408–441 | DOI | MR | Zbl | DOI

[8] Yu. A. Kutoyants, Statistical inference for ergodic diffusion processes, Springer Ser. Statist., Springer-Verlag London, Ltd., London, 2004, xiv+481 pp. | DOI | MR | Zbl

[9] D. Lamberton, B. Lapeyre, Introduction au calcul stochastique appliqué à la finance, 2ème éd., Ellipses Édition Marketing, Paris, 1997, 176 pp. | MR | Zbl

[10] L. Overbeck, “Estimation for continuous branching processes”, Scand. J. Statist., 25:1 (1998), 111–126 | DOI | MR | Zbl

[11] M. Zani, “Large deviations for squared radial Ornstein–Uhlenbeck processes”, Stochastic Process. Appl., 102:1 (2002), 25–42 | DOI | MR | Zbl