Mots-clés : structure conditions, progressive enlargement of filtrations.
@article{TVP_2020_65_3_a5,
author = {T. Choulli and J. Deng},
title = {Structure conditions under progressively added information},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {538--582},
year = {2020},
volume = {65},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a5/}
}
T. Choulli; J. Deng. Structure conditions under progressively added information. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 538-582. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a5/
[1] A. Aksamit, T. Choulli, Jun Deng, M. Jeanblanc, “Arbitrages in a progressive enlargement setting”, Arbitrage, credit and informational risks, Peking Univ. Ser. Math., 5, World Sci. Publ., 2014, 53–86 | DOI | MR | Zbl
[2] A. Aksamit, T. Choulli, Jun Deng, M. Jeanblanc, “No-arbitrage up to random horizon for quasi-left-continuous models”, Finance Stoch., 21:4 (2017), 1103–1139 | DOI | MR | Zbl
[3] A. Aksamit, T. Choulli, Jun Deng, M. Jeanblanc, “No-arbitrage under a class of honest times”, Finance Stoch., 22:1 (2018), 127–159 | DOI | MR | Zbl
[4] A. Aksamit, T. Choulli, Jun Deng, M. Jeanblanc, “No-arbitrage under additional information for thin semimartingale models”, Stochastic Process. Appl., 129:9 (2019), 3080–3115 | DOI | MR | Zbl
[5] A. Aksamit, T. Choulli, M. Jeanblanc, “On an optional semimartingale decomposition and the existence of a deflator in an enlarged filtration”, In memoriam Marc Yor — Séminaire de Probabilités XLVII, Lecture Notes in Math., 2137, Springer, Cham, 2015, 187–218 | DOI | MR | Zbl
[6] B. Allen, “Information as an economic commodity”, Amer. Econ. Rev., 80:2 (1990), 268–273
[7] J. Amendinger, P. Imkeller, M. Schweizer, “Additional logarithmic utility of an insider”, Stochastic Process. Appl., 75:2 (1998), 263–286 | DOI | MR | Zbl
[8] J.-P. Ansel, Ch. Stricker, “Lois de martingale, densités et décomposition de Föllmer–Schweizer”, Ann. Inst. H. Poincaré Probab. Statist., 28:3 (1992), 375–392 | MR | Zbl
[9] J.-P. Ansel, Ch. Stricker, “Couverture des actifs contingents et prix maximum”, Ann. Inst. H. Poincaré Probab. Statist., 30:2 (1994), 303–315 | MR | Zbl
[10] K. J. Arrow, Information and economic behavior, Tech. rep. No 14, Harvard Univ., Cambridge, MA, 1973, 31 pp.
[11] K. J. Arrow, The economics of information, Collected papers of Kenneth J. Arrow, 4, Harvard Univ. Press, Cambridge, MA, 1984, 284 pp.
[12] M. T. Barlow, “Study of a filtration expanded to include an honest time”, Z. Wahrsch. Verw. Gebiete, 44:4 (1978), 307–323 | DOI | MR | Zbl
[13] F. Biagini, P. Guasoni, M. Pratelli, “Mean-variance hedging for stochastic volatility models”, Math. Finance, 10:2 (2000), 109–123 | DOI | MR | Zbl
[14] A. Černý, J. Kallsen, “On the structure of general mean-variance hedging strategies”, Ann. Probab., 35:4 (2007), 1479–1531 | DOI | MR | Zbl
[15] G. Chichilnisky (ed.), Markets, information and uncertainty. Essays in economic theory in honor of Kenneth J. Arrow, Cambridge Univ. Press, New York, 1999, 386 pp. | DOI
[16] T. Choulli, L. Krawczyk, Ch. Stricker, “$\mathscr{E}$-martingales and their applications in mathematical finance”, Ann. Probab., 26:2 (1998), 853–876 | DOI | MR | Zbl
[17] T. Choulli, Ch. Stricker, “Deux applications de la décomposition de Galtchouk–Kunita–Watanabe”, Séminaire de probabilités XXX, Lecture Notes in Math., 1626, Springer, Berlin, 1996, 12–23 | DOI | MR | Zbl
[18] T. Choulli, Ch. Stricker, L. Krawczyk, “On Fefferman and Burkholder–Davis–Gundy inequalities for $\mathscr{E}$-martingales”, Probab. Theory Related Fields, 113:4 (1999), 571–597 | DOI | MR | Zbl
[19] T. Choulli, N. Vandaele, M. Vanmaele, “The Föllmer–Schweizer decomposition: comparison and description”, Stochastic Process. Appl., 120:6 (2010), 853–872 | DOI | MR | Zbl
[20] F. Delbaen, W. Schachermayer, “The variance-optimal martingale measure for continuous processes”, Bernoulli, 2:1 (1996), 81–105 | DOI | MR | Zbl
[21] C. Dellacherie, P. A. Meyer, “À propos du travail de Yor sur le grossissement de tribus”, Séminaire de probabilités XII (Univ. Strasbourg, Strasbourg, 1976/1977), Lecture Notes in Math., 649, Springer, Berlin, 1978, 70–77 | DOI | MR | Zbl
[22] Probabilities and potential. B. Theory of martingales, North-Holland Math. Stud., 72, North-Holland Publishing Co., Amsterdam, 1982, xvii+463 pp. | MR | Zbl | Zbl
[23] M. Dellacherie, B. Maisonneuve, P.-A. Meyer, Probabilités et potentiel. Ch. XVII à XXIV. Processus de Markov (fin). Compléments de calcul stochastique, Hermann, Paris, 1992, 429 pp.
[24] D. Duffie, H. R. Richardson, “Mean-variance hedging in continuous time”, Ann. Appl. Probab., 1:1 (1991), 1–15 | DOI | MR | Zbl
[25] C. Fontana, M. Jeanblanc, Shiqi Song, “On arbitrages arising with honest times”, Finance Stoch., 18:3 (2014), 515–543 | DOI | MR | Zbl
[26] Sheng Wu He, Jia Gang Wang, Jia An Yan, Semimartingale theory and stochastic calculus, Kexue Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL, 1992, xiv+546 pp. | MR | Zbl
[27] D. Heath, E. Platen, M. Schweizer, “A comparison of two quadratic approaches to hedging in incomplete markets”, Math. Finance, 11:4 (2001), 385–413 | DOI | MR | Zbl
[28] P. Imkeller, “Random times at which insiders can have free lunches”, Stoch. Stoch. Rep., 74:1-2 (2002), 465–487 | DOI | MR | Zbl
[29] J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, Springer, Berlin, 1979, x+539 pp. | DOI | MR | Zbl
[30] J. Jacod, “Grossissement initial, hypothèse $(H')$ et théorème de Girsanov”, Grossissements de filtrations: exemples et applications, Séminaire de calcul stochastique (Paris, 1982/83), Lecture Notes in Math., 1118, Springer-Verlag, Berlin, 1985, 15–35 | DOI | Zbl
[31] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | Zbl
[32] M. Jeanblanc, M. Mania, M. Santacroce, M. Schweizer, “Mean-variance hedging via stochastic control and BSDEs for general semimartingales”, Ann. Appl. Probab., 22:6 (2012), 2388–2428 | DOI | MR | Zbl
[33] T. Jeulin, Semi-martingales et grossissement d'une filtration, Lecture Notes in Math., 833, Springer, Berlin, 1980, ix+142 pp. | DOI | MR | Zbl
[34] A. Kohatsu-Higa, A. Sulem, “Utility maximization in an insider influenced market”, Math. Finance, 16:1 (2006), 153–179 | DOI | MR | Zbl
[35] J. P. Laurent, Huyên Pham, “Dynamic programming and mean-variance hedging”, Finance Stoch., 3:1 (1999), 83–110 | DOI | MR | Zbl
[36] W. Rudin, Functional analysis, Internat. Ser. Pure Appl. Math., 2nd ed., McGraw-Hill, Inc., 1991, xviii+424 pp. | MR | MR | Zbl
[37] M. Schweizer, “On the minimal martingale measure and the Föllmer–Schweizer decomposition”, Stochastic Anal. Appl., 13:5 (1995), 573–599 | DOI | MR | Zbl
[38] M. Schweizer, A guided tour through quadratic hedging approaches, SFB 373 Discussion Paper No 1999-96, Humboldt Univ., Berlin, 1999, 31 pp. https://econpapers.repec.org/paper/zbwsfb373/199996.htm
[39] M. Yor, “Grossissement d'une filtration et semi-martingales: théorèmes généraux”, Séminaire de probabilités XII (Univ. Strasbourg, Strasbourg, 1976/1977), Lecture Notes in Math., 649, Springer, Berlin, 1978, 61–69 | DOI | MR | Zbl