Structure conditions under progressively added information
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 538-582 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has been understood that the “local” existence of the Markowitz optimal portfolio or the solution to the local-risk minimization problem is guaranteed by some specific mathematical structures on the underlying assets' price processes known in the literature as “structure conditions.” In this paper, we consider a semimartingale market model and an arbitrary random time. This random time may model the default time of a firm, the death time of an insured, or any occurrence time of an event that might somehow impact the market model. By adding additional uncertainty to the market model via this random time, the structure conditions may fail, and hence the Markowitz optimal portfolio and other quadratic-optimal portfolios might fail to exist. Our aim is to investigate the impact of this random time on the structure conditions from different perspectives. Our analysis allows us to conclude that under some mild assumptions on the market model and the random time, the structure conditions remain valid on the one hand. Furthermore, we provide two examples illustrating the importance of these assumptions. On the other hand, we describe the random time models such that these structure conditions are preserved for any market model. These results are elaborated separately for the two contexts of stopping with the random time and incorporating totally a specific class of random times, respectively.
Keywords: semimartingale market models, random time, honest times
Mots-clés : structure conditions, progressive enlargement of filtrations.
@article{TVP_2020_65_3_a5,
     author = {T. Choulli and J. Deng},
     title = {Structure conditions under progressively added information},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {538--582},
     year = {2020},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a5/}
}
TY  - JOUR
AU  - T. Choulli
AU  - J. Deng
TI  - Structure conditions under progressively added information
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 538
EP  - 582
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a5/
LA  - ru
ID  - TVP_2020_65_3_a5
ER  - 
%0 Journal Article
%A T. Choulli
%A J. Deng
%T Structure conditions under progressively added information
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 538-582
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a5/
%G ru
%F TVP_2020_65_3_a5
T. Choulli; J. Deng. Structure conditions under progressively added information. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 538-582. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a5/

[1] A. Aksamit, T. Choulli, Jun Deng, M. Jeanblanc, “Arbitrages in a progressive enlargement setting”, Arbitrage, credit and informational risks, Peking Univ. Ser. Math., 5, World Sci. Publ., 2014, 53–86 | DOI | MR | Zbl

[2] A. Aksamit, T. Choulli, Jun Deng, M. Jeanblanc, “No-arbitrage up to random horizon for quasi-left-continuous models”, Finance Stoch., 21:4 (2017), 1103–1139 | DOI | MR | Zbl

[3] A. Aksamit, T. Choulli, Jun Deng, M. Jeanblanc, “No-arbitrage under a class of honest times”, Finance Stoch., 22:1 (2018), 127–159 | DOI | MR | Zbl

[4] A. Aksamit, T. Choulli, Jun Deng, M. Jeanblanc, “No-arbitrage under additional information for thin semimartingale models”, Stochastic Process. Appl., 129:9 (2019), 3080–3115 | DOI | MR | Zbl

[5] A. Aksamit, T. Choulli, M. Jeanblanc, “On an optional semimartingale decomposition and the existence of a deflator in an enlarged filtration”, In memoriam Marc Yor — Séminaire de Probabilités XLVII, Lecture Notes in Math., 2137, Springer, Cham, 2015, 187–218 | DOI | MR | Zbl

[6] B. Allen, “Information as an economic commodity”, Amer. Econ. Rev., 80:2 (1990), 268–273

[7] J. Amendinger, P. Imkeller, M. Schweizer, “Additional logarithmic utility of an insider”, Stochastic Process. Appl., 75:2 (1998), 263–286 | DOI | MR | Zbl

[8] J.-P. Ansel, Ch. Stricker, “Lois de martingale, densités et décomposition de Föllmer–Schweizer”, Ann. Inst. H. Poincaré Probab. Statist., 28:3 (1992), 375–392 | MR | Zbl

[9] J.-P. Ansel, Ch. Stricker, “Couverture des actifs contingents et prix maximum”, Ann. Inst. H. Poincaré Probab. Statist., 30:2 (1994), 303–315 | MR | Zbl

[10] K. J. Arrow, Information and economic behavior, Tech. rep. No 14, Harvard Univ., Cambridge, MA, 1973, 31 pp.

[11] K. J. Arrow, The economics of information, Collected papers of Kenneth J. Arrow, 4, Harvard Univ. Press, Cambridge, MA, 1984, 284 pp.

[12] M. T. Barlow, “Study of a filtration expanded to include an honest time”, Z. Wahrsch. Verw. Gebiete, 44:4 (1978), 307–323 | DOI | MR | Zbl

[13] F. Biagini, P. Guasoni, M. Pratelli, “Mean-variance hedging for stochastic volatility models”, Math. Finance, 10:2 (2000), 109–123 | DOI | MR | Zbl

[14] A. Černý, J. Kallsen, “On the structure of general mean-variance hedging strategies”, Ann. Probab., 35:4 (2007), 1479–1531 | DOI | MR | Zbl

[15] G. Chichilnisky (ed.), Markets, information and uncertainty. Essays in economic theory in honor of Kenneth J. Arrow, Cambridge Univ. Press, New York, 1999, 386 pp. | DOI

[16] T. Choulli, L. Krawczyk, Ch. Stricker, “$\mathscr{E}$-martingales and their applications in mathematical finance”, Ann. Probab., 26:2 (1998), 853–876 | DOI | MR | Zbl

[17] T. Choulli, Ch. Stricker, “Deux applications de la décomposition de Galtchouk–Kunita–Watanabe”, Séminaire de probabilités XXX, Lecture Notes in Math., 1626, Springer, Berlin, 1996, 12–23 | DOI | MR | Zbl

[18] T. Choulli, Ch. Stricker, L. Krawczyk, “On Fefferman and Burkholder–Davis–Gundy inequalities for $\mathscr{E}$-martingales”, Probab. Theory Related Fields, 113:4 (1999), 571–597 | DOI | MR | Zbl

[19] T. Choulli, N. Vandaele, M. Vanmaele, “The Föllmer–Schweizer decomposition: comparison and description”, Stochastic Process. Appl., 120:6 (2010), 853–872 | DOI | MR | Zbl

[20] F. Delbaen, W. Schachermayer, “The variance-optimal martingale measure for continuous processes”, Bernoulli, 2:1 (1996), 81–105 | DOI | MR | Zbl

[21] C. Dellacherie, P. A. Meyer, “À propos du travail de Yor sur le grossissement de tribus”, Séminaire de probabilités XII (Univ. Strasbourg, Strasbourg, 1976/1977), Lecture Notes in Math., 649, Springer, Berlin, 1978, 70–77 | DOI | MR | Zbl

[22] Probabilities and potential. B. Theory of martingales, North-Holland Math. Stud., 72, North-Holland Publishing Co., Amsterdam, 1982, xvii+463 pp. | MR | Zbl | Zbl

[23] M. Dellacherie, B. Maisonneuve, P.-A. Meyer, Probabilités et potentiel. Ch. XVII à XXIV. Processus de Markov (fin). Compléments de calcul stochastique, Hermann, Paris, 1992, 429 pp.

[24] D. Duffie, H. R. Richardson, “Mean-variance hedging in continuous time”, Ann. Appl. Probab., 1:1 (1991), 1–15 | DOI | MR | Zbl

[25] C. Fontana, M. Jeanblanc, Shiqi Song, “On arbitrages arising with honest times”, Finance Stoch., 18:3 (2014), 515–543 | DOI | MR | Zbl

[26] Sheng Wu He, Jia Gang Wang, Jia An Yan, Semimartingale theory and stochastic calculus, Kexue Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL, 1992, xiv+546 pp. | MR | Zbl

[27] D. Heath, E. Platen, M. Schweizer, “A comparison of two quadratic approaches to hedging in incomplete markets”, Math. Finance, 11:4 (2001), 385–413 | DOI | MR | Zbl

[28] P. Imkeller, “Random times at which insiders can have free lunches”, Stoch. Stoch. Rep., 74:1-2 (2002), 465–487 | DOI | MR | Zbl

[29] J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, Springer, Berlin, 1979, x+539 pp. | DOI | MR | Zbl

[30] J. Jacod, “Grossissement initial, hypothèse $(H')$ et théorème de Girsanov”, Grossissements de filtrations: exemples et applications, Séminaire de calcul stochastique (Paris, 1982/83), Lecture Notes in Math., 1118, Springer-Verlag, Berlin, 1985, 15–35 | DOI | Zbl

[31] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | Zbl

[32] M. Jeanblanc, M. Mania, M. Santacroce, M. Schweizer, “Mean-variance hedging via stochastic control and BSDEs for general semimartingales”, Ann. Appl. Probab., 22:6 (2012), 2388–2428 | DOI | MR | Zbl

[33] T. Jeulin, Semi-martingales et grossissement d'une filtration, Lecture Notes in Math., 833, Springer, Berlin, 1980, ix+142 pp. | DOI | MR | Zbl

[34] A. Kohatsu-Higa, A. Sulem, “Utility maximization in an insider influenced market”, Math. Finance, 16:1 (2006), 153–179 | DOI | MR | Zbl

[35] J. P. Laurent, Huyên Pham, “Dynamic programming and mean-variance hedging”, Finance Stoch., 3:1 (1999), 83–110 | DOI | MR | Zbl

[36] W. Rudin, Functional analysis, Internat. Ser. Pure Appl. Math., 2nd ed., McGraw-Hill, Inc., 1991, xviii+424 pp. | MR | MR | Zbl

[37] M. Schweizer, “On the minimal martingale measure and the Föllmer–Schweizer decomposition”, Stochastic Anal. Appl., 13:5 (1995), 573–599 | DOI | MR | Zbl

[38] M. Schweizer, A guided tour through quadratic hedging approaches, SFB 373 Discussion Paper No 1999-96, Humboldt Univ., Berlin, 1999, 31 pp. https://econpapers.repec.org/paper/zbwsfb373/199996.htm

[39] M. Yor, “Grossissement d'une filtration et semi-martingales: théorèmes généraux”, Séminaire de probabilités XII (Univ. Strasbourg, Strasbourg, 1976/1977), Lecture Notes in Math., 649, Springer, Berlin, 1978, 61–69 | DOI | MR | Zbl