Limit theorems for record indicators in threshold $F^\alpha$-schemes
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 521-537 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In Nevzorov's $F^\alpha$-scheme, one deals with a sequence of independent random variables with distribution functions that are powers of a common continuous distribution function. A key property of the $F^\alpha$-scheme is that the record indicators for such a sequence are independent. This allows one to obtain several important limit theorems for the total number of records in the sequence up to time $n\to\infty$. We extend these theorems to a much more general class of sequences of random variables obeying a "threshold $F^\alpha$-scheme" where the distribution functions of the variables are close to the powers of a common $F$ only in their right tails, above certain nonrandom nondecreasing threshold levels. Of independent interest is the characterization of the growth rate for extremal processes that we derive in order to verify the conditions of our main theorem. We also establish the asymptotic pairwise independence of record indicators in a special case of threshold $F^\alpha$-schemes.
Keywords: records, extremal process, growth rate, almost sure behavior.
Mots-clés : maxima of random variables, $F^\alpha$-scheme
@article{TVP_2020_65_3_a4,
     author = {P. He and K. A. Borovkov},
     title = {Limit theorems for record indicators in threshold $F^\alpha$-schemes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {521--537},
     year = {2020},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a4/}
}
TY  - JOUR
AU  - P. He
AU  - K. A. Borovkov
TI  - Limit theorems for record indicators in threshold $F^\alpha$-schemes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 521
EP  - 537
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a4/
LA  - ru
ID  - TVP_2020_65_3_a4
ER  - 
%0 Journal Article
%A P. He
%A K. A. Borovkov
%T Limit theorems for record indicators in threshold $F^\alpha$-schemes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 521-537
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a4/
%G ru
%F TVP_2020_65_3_a4
P. He; K. A. Borovkov. Limit theorems for record indicators in threshold $F^\alpha$-schemes. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 521-537. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a4/

[1] R. Ballerini, S. I. Resnick, “Embedding sequences of successive maxima in extremal processes, with applications”, J. Appl. Probab., 24:4 (1987), 827–837 | DOI | MR | Zbl

[2] K. Borovkov, D. Pfeifer, “On record indices and record times”, J. Statist. Plann. Inference, 45:1-2 (1995), 65–79 | DOI | MR | Zbl

[3] K. Borovkov, D. Pfeifer, “On improvements of the order of approximation in the Poisson limit theorem”, J. Appl. Probab., 33:1 (1996), 146–155 | DOI | MR | Zbl

[4] P. Deheuvels, D. Pfeifer, “Semigroups and Poisson approximation”, New perspectives in theoretical and applied statistics (Bilbao, 1986), Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., Wiley, New York, 1987, 439–448 | MR | Zbl

[5] P. Deheuvels, D. Pfeifer, “On a relationship between Uspensky's theorem and Poisson approximations”, Ann. Inst. Statist. Math., 40:4 (1988), 671–681 | DOI | MR | Zbl

[6] R. L. Dobrushin, “Prescribing a system of random variables by conditional distributions”, Theory Probab. Appl., 15:3 (1970), 458–486 | DOI | MR | Zbl

[7] P. Doukhan, O. I. Klesov, A. G. Pakes, J. G. Steinebach, “Limit theorems for record counts and times in the $F^\alpha$-scheme”, Extremes, 16:2 (2013), 147–171 | DOI | MR | Zbl

[8] P. Doukhan, O. I. Klesov, J. G. Steinebach, “Strong laws of large numbers in an $F^\alpha $-scheme”, Mathematical statistics and limit theorems, Springer, Cham, 2015, 287–303 | DOI | MR | Zbl

[9] A. P. Godbole, “On Klass' series criterion for the minimal growth rate of partial maxima”, Statist. Probab. Lett., 5:3 (1987), 235–238 | DOI | MR | Zbl

[10] G. Haiman, “Étude des extrêmes d'une suite stationnaire $m$-dépendante avec une application relative aux accroissements du processus de Wiener”, Ann. Inst. H. Poincaré Probab. Statist., 23:3 (1987), 425–457 | MR | Zbl

[11] G. Haiman, N. Mayeur, V. Nevzorov, M. Puri, “Records and 2-block records of 1-dependent stationary sequences under local dependence”, Ann. Inst. H. Poincaré Probab. Statist., 34:4 (1998), 481–503 | DOI | MR | Zbl

[12] R. Kemp, Fundamentals of the average case analysis of particular algorithms, Wiley-Teubner Ser. Comput. Sci., John Wiley Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1984, viii+233 pp. | DOI | MR | Zbl

[13] M. J. Klass, “The minimal growth rate of partial maxima”, Ann. Probab., 12:2 (1984), 380–389 | DOI | MR | Zbl

[14] M. J. Klass, “The Robbins–Siegmund series criterion for partial maxima”, Ann. Probab., 13:4 (1985), 1369–1370 | DOI | MR | Zbl

[15] V. B. Nevzorov, “Limit theorems for order statistics and record values”, Tezisy dokladov 3-i Mezhdunarodnoi Vilnyusskoi konferentsii po teorii veroyatnostei i matematicheskoi statistike, v. 2, In-t matem. i kibernet. AN Lit. SSR, Vilnyus, 1981, 86–87

[16] V. B. Nevzorov, “Record and interrecord times for sequences of nonidentically distributed random variables”, J. Soviet Math., 36:4 (1987), 510–516 | DOI | MR | Zbl

[17] V. B. Nevzorov, “Records”, Theor. Prob. Appl., 32:2 (1988), 201–228 | DOI | MR | Zbl

[18] V. B. Nevzorov, Records: mathematical theory, Transl. Math. Monogr., 194, Amer. Math. Soc., Providence, RI, 2001, x+164 pp. | MR | MR | Zbl | Zbl

[19] M. Ahsanullah, V. B. Nevzorov, Records via probability theory, Atlantis Stud. Probab. Stat., 6, Atlantis Press, Paris, 2015, xii+255 pp. | DOI | MR | Zbl

[20] D. Pfeifer, “Extremal processes, secretary problems and the $1/e$-law”, J. Appl. Probab., 26:4 (1989), 722–733 | DOI | MR | Zbl

[21] D. Pfeifer, “Some remarks on Nevzorov's record model”, Adv. in Appl. Probab., 23:4 (1991), 823–834 | DOI | MR | Zbl

[22] S. I. Resnick, Extreme values, regular variation and point processes, Appl. Probab. Ser. Appl. Probab. Trust, 4, Springer-Verlag, New York, 1987, xii+320 pp. | DOI | MR | Zbl

[23] S. M. Ross, “A simple heuristic approach to simplex efficiency”, European J. Oper. Res., 9:4 (1982), 344–346 | DOI | MR | Zbl

[24] M. C. K. Yang, “On the distribution of the inter-record times in an increasing population”, J. Appl. Probab., 12:1 (1975), 148–154 | DOI | MR | Zbl