@article{TVP_2020_65_3_a3,
author = {Ch. Cuchiero and I. Klein and J. Teichmann},
title = {A~fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {498--520},
year = {2020},
volume = {65},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a3/}
}
TY - JOUR AU - Ch. Cuchiero AU - I. Klein AU - J. Teichmann TI - A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 498 EP - 520 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a3/ LA - ru ID - TVP_2020_65_3_a3 ER -
%0 Journal Article %A Ch. Cuchiero %A I. Klein %A J. Teichmann %T A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting %J Teoriâ veroâtnostej i ee primeneniâ %D 2020 %P 498-520 %V 65 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a3/ %G ru %F TVP_2020_65_3_a3
Ch. Cuchiero; I. Klein; J. Teichmann. A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 498-520. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a3/
[1] C. Cuchiero, I. Klein, J. Teichmann, “A new perspective on the fundamental theorem of asset pricing for large financial markets”, Theory Probab. Appl., 60:4 (2016), 561–579 | DOI | DOI | MR | Zbl
[2] C. Cuchiero, J. Teichmann, “A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing”, Finance Stoch., 19:4 (2015), 743–761 | DOI | MR | Zbl
[3] M. De Donno, P. Guasoni, M. Pratelli, “Super-replication and utility maximization in large financial markets”, Stochastic Process. Appl., 115:12 (2005), 2006–2022 | DOI | MR | Zbl
[4] F. Delbaen, W. Schachermayer, “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl
[5] Yu. M. Kabanov, “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and control of stochastic processes (Moscow, 1995/1996), World Sci. Publ., River Edge, NJ, 1997, 191–203 | MR | Zbl
[6] Yu. M. Kabanov, D. O. Kramkov, “Large financial markets: asymptotic arbitrage and contiguity”, Theory Probab. Appl., 39:1 (1994), 182–187 | DOI | MR | Zbl
[7] Yu. M. Kabanov, D. O. Kramkov, “Asymptotic arbitrage in large financial markets”, Finance Stoch., 2:2 (1998), 143–172 | DOI | MR | Zbl
[8] Yu. Kabanov, M. Safarian, Markets with transaction costs. Mathematical theory, Springer Finance, Springer-Verlag, Berlin, 2009, xiv+294 pp. | DOI | MR | Zbl
[9] I. Klein, W. Schachermayer, “Asymptotic arbitrage in non-complete large financial markets”, Teoriya veroyatn. i ee primen., 41:4 (1996), 927–934 ; Theory Probab. Appl., 41:4 (1997), 780–788 | DOI | MR | Zbl | DOI
[10] Yu. Kabanov, C. Stricker, “The Dalang–Morton–Willinger theorem under delayed and restricted information”, In memoriam Paul-André Meyer. Séminaire de probabilités XXXIX, Lecture Notes in Math., 1874, Springer, Berlin, 2006, 209–213 | DOI | MR | Zbl
[11] W. Schachermayer, “Martingale measures for discrete time processes with infinite horizon”, Math. Finance, 4:1 (1994), 25–55 | DOI | MR | Zbl
[12] C. Stricker, “Arbitrage et lois de martingale”, Ann. Inst. H. Poincaré Probab. Statist., 26:3 (1990), 451–460 | MR | Zbl
[13] Jia-An Yan, “Caractérisation d'une classe d'ensembles convexes de $L^{1}$ ou $H^{1}$”, Séminaire de probabilités XIV (Paris, 1978/1979), Lecture Notes in Math., 784, Springer, Berlin, 1980, 220–222 | DOI | MR | Zbl