A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 498-520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a surprisingly simple version of the fundamental theorem of asset pricing (FTAP) for continuous time large financial markets with two filtrations in an $L^p$-setting for ${1 \leq p < \infty}$. This extends the results of Kabanov and Stricker in [“The Dalang–Morton–Willinger theorem under delayed and restricted information,” in In Memoriam: Paul-André Meyer, Springer, 2006, pp. 209–213] to continuous time and to a large financial market setting while, however, still preserving the simplicity of the discrete time setting. On the other hand, it generalizes Stricker's $L^p$-version of FTAP [Ann. Inst. H. Poincaré Probab. Statist., 26 (1990), pp. 451–460] towards a setting with two filtrations. We do not assume that price processes are semimartingales (and it does not follow due to trading with respect to the smaller filtration) or have any specific path properties. The two filtrations in question can also be completely general, and we do not require admissibility of portfolio wealth processes. We go for a completely general and realistic result, where trading strategies are just predictable with respect to a smaller filtration than the one generated by the price processes. Applications include modeling trading with delayed information, trading on different time grids, dealing with inaccurate price information, and randomization approaches to uncertainty, which will be dealt with elsewhere.
Keywords: fundamental theorem of asset pricing, large financial markets, filtration shrinkage.
@article{TVP_2020_65_3_a3,
     author = {Ch. Cuchiero and I. Klein and J. Teichmann},
     title = {A~fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {498--520},
     year = {2020},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a3/}
}
TY  - JOUR
AU  - Ch. Cuchiero
AU  - I. Klein
AU  - J. Teichmann
TI  - A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 498
EP  - 520
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a3/
LA  - ru
ID  - TVP_2020_65_3_a3
ER  - 
%0 Journal Article
%A Ch. Cuchiero
%A I. Klein
%A J. Teichmann
%T A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 498-520
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a3/
%G ru
%F TVP_2020_65_3_a3
Ch. Cuchiero; I. Klein; J. Teichmann. A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 498-520. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a3/

[1] C. Cuchiero, I. Klein, J. Teichmann, “A new perspective on the fundamental theorem of asset pricing for large financial markets”, Theory Probab. Appl., 60:4 (2016), 561–579 | DOI | DOI | MR | Zbl

[2] C. Cuchiero, J. Teichmann, “A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing”, Finance Stoch., 19:4 (2015), 743–761 | DOI | MR | Zbl

[3] M. De Donno, P. Guasoni, M. Pratelli, “Super-replication and utility maximization in large financial markets”, Stochastic Process. Appl., 115:12 (2005), 2006–2022 | DOI | MR | Zbl

[4] F. Delbaen, W. Schachermayer, “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[5] Yu. M. Kabanov, “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and control of stochastic processes (Moscow, 1995/1996), World Sci. Publ., River Edge, NJ, 1997, 191–203 | MR | Zbl

[6] Yu. M. Kabanov, D. O. Kramkov, “Large financial markets: asymptotic arbitrage and contiguity”, Theory Probab. Appl., 39:1 (1994), 182–187 | DOI | MR | Zbl

[7] Yu. M. Kabanov, D. O. Kramkov, “Asymptotic arbitrage in large financial markets”, Finance Stoch., 2:2 (1998), 143–172 | DOI | MR | Zbl

[8] Yu. Kabanov, M. Safarian, Markets with transaction costs. Mathematical theory, Springer Finance, Springer-Verlag, Berlin, 2009, xiv+294 pp. | DOI | MR | Zbl

[9] I. Klein, W. Schachermayer, “Asymptotic arbitrage in non-complete large financial markets”, Teoriya veroyatn. i ee primen., 41:4 (1996), 927–934 ; Theory Probab. Appl., 41:4 (1997), 780–788 | DOI | MR | Zbl | DOI

[10] Yu. Kabanov, C. Stricker, “The Dalang–Morton–Willinger theorem under delayed and restricted information”, In memoriam Paul-André Meyer. Séminaire de probabilités XXXIX, Lecture Notes in Math., 1874, Springer, Berlin, 2006, 209–213 | DOI | MR | Zbl

[11] W. Schachermayer, “Martingale measures for discrete time processes with infinite horizon”, Math. Finance, 4:1 (1994), 25–55 | DOI | MR | Zbl

[12] C. Stricker, “Arbitrage et lois de martingale”, Ann. Inst. H. Poincaré Probab. Statist., 26:3 (1990), 451–460 | MR | Zbl

[13] Jia-An Yan, “Caractérisation d'une classe d'ensembles convexes de $L^{1}$ ou $H^{1}$”, Séminaire de probabilités XIV (Paris, 1978/1979), Lecture Notes in Math., 784, Springer, Berlin, 1980, 220–222 | DOI | MR | Zbl