On the times of attaining high levels by a random walk in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 460-478

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(p_i,q_i)$, $i\in \mathbf{Z}$, be a sequence of independent identically distributed random vectors such that $p_i,q_i>0$ and $p_i+q_i$ $=1$ a.s. for $i\in \mathbf{Z}$. We consider a random walk in the random environment $\{(p_i,q_i)$, $i\in \mathbf{Z}\}$. It is assumed that $\mathbf{E}\ln (p_0/q_0)=0$ and $0\mathbf{E}\ln^{2}(q_0/p_0)+\infty$. We study the times of attaining $T_{n_1},\dots,T_{n_m}$ of increasing levels $n_1,\dots,n_m$ of order $n$. It is proved that the underlying probability space can be partitioned into random events (depending on $n$) such that their probabilities for large $n$ are close to positive numbers, and on each such event, the set of times $T_{n_1},\dots,T_{n_m}$ is partitioned into consecutive groups such that elements of each group have the same order and are negligible compared with those of the successive group.
Keywords: random walk in random environment, branching in random environment with immigration, limit theorem.
@article{TVP_2020_65_3_a1,
     author = {V. I. Afanasyev},
     title = {On the times of attaining high levels by a random walk in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {460--478},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On the times of attaining high levels by a random walk in a random environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 460
EP  - 478
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/
LA  - ru
ID  - TVP_2020_65_3_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On the times of attaining high levels by a random walk in a random environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 460-478
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/
%G ru
%F TVP_2020_65_3_a1
V. I. Afanasyev. On the times of attaining high levels by a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 460-478. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/