@article{TVP_2020_65_3_a1,
author = {V. I. Afanasyev},
title = {On the times of attaining high levels by a random walk in a random environment},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {460--478},
year = {2020},
volume = {65},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/}
}
V. I. Afanasyev. On the times of attaining high levels by a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 460-478. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/
[1] F. Solomon, “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl
[2] G. A. Ritter, Random walk in a random environment, critical case, Thesis (Ph.D.), Cornell Univ., Cornell, USA, 1976, 78 pp. | MR
[3] V. I. Afanasyev, “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567 | DOI | DOI | MR | Zbl
[4] V. I. Afanasyev, “Two-boundary problem for a random walk in a random environment”, Theory Probab. Appl., 63:3 (2019), 339–350 | DOI | DOI | MR | Zbl
[5] H. Kesten, M. V. Kozlov, F. Spitzer, “A limit law for random walk in a random environment”, Compositio Math., 30:2 (1975), 145–168 | MR | Zbl
[6] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl
[7] J. Jacod, A. N. Shiryaev, “Ch. I–VI”, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 1987, 1–347 | DOI | MR | MR | Zbl | Zbl
[8] V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Aide-mémoire de théorie des probabilités et de statistique mathématique, Mir, Moscow, 1983, 581 pp. | MR | MR | Zbl | Zbl
[9] V. I. Afanasev, “Dvugranichnaya zadacha dlya sluchainogo bluzhdaniya s ogranicheniem na maksimalnoe priraschenie”, Diskret. matem., 31:3 (2019), 3–16 | DOI | MR