On the times of attaining high levels by a random walk in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 460-478
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(p_i,q_i)$, $i\in \mathbf{Z}$, be a sequence of independent
identically distributed random vectors such that $p_i,q_i>0$ and $p_i+q_i$ $=1$
a.s. for
$i\in \mathbf{Z}$. We consider a random walk in the random environment
$\{(p_i,q_i)$, $i\in \mathbf{Z}\}$. It is assumed that $\mathbf{E}\ln
(p_0/q_0)=0$ and $0\mathbf{E}\ln^{2}(q_0/p_0)+\infty$. We study the times
of attaining $T_{n_1},\dots,T_{n_m}$ of increasing levels $n_1,\dots,n_m$ of
order $n$. It is proved that the underlying probability space can be
partitioned into random events (depending on $n$) such that their
probabilities for large $n$ are close to positive numbers, and on each such
event, the set of times $T_{n_1},\dots,T_{n_m}$ is partitioned into
consecutive groups such that elements of each group have the same order
and are negligible compared with those of the successive group.
Keywords:
random walk in random environment, branching in random environment with immigration,
limit theorem.
@article{TVP_2020_65_3_a1,
author = {V. I. Afanasyev},
title = {On the times of attaining high levels by a random walk in a random environment},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {460--478},
publisher = {mathdoc},
volume = {65},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/}
}
TY - JOUR AU - V. I. Afanasyev TI - On the times of attaining high levels by a random walk in a random environment JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 460 EP - 478 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/ LA - ru ID - TVP_2020_65_3_a1 ER -
V. I. Afanasyev. On the times of attaining high levels by a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 460-478. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/