On the times of attaining high levels by a random walk in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 460-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(p_i,q_i)$, $i\in \mathbf{Z}$, be a sequence of independent identically distributed random vectors such that $p_i,q_i>0$ and $p_i+q_i$ $=1$ a.s. for $i\in \mathbf{Z}$. We consider a random walk in the random environment $\{(p_i,q_i)$, $i\in \mathbf{Z}\}$. It is assumed that $\mathbf{E}\ln (p_0/q_0)=0$ and $0<\mathbf{E}\ln^{2}(q_0/p_0)<+\infty$. We study the times of attaining $T_{n_1},\dots,T_{n_m}$ of increasing levels $n_1,\dots,n_m$ of order $n$. It is proved that the underlying probability space can be partitioned into random events (depending on $n$) such that their probabilities for large $n$ are close to positive numbers, and on each such event, the set of times $T_{n_1},\dots,T_{n_m}$ is partitioned into consecutive groups such that elements of each group have the same order and are negligible compared with those of the successive group.
Keywords: random walk in random environment, branching in random environment with immigration, limit theorem.
@article{TVP_2020_65_3_a1,
     author = {V. I. Afanasyev},
     title = {On the times of attaining high levels by a random walk in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {460--478},
     year = {2020},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On the times of attaining high levels by a random walk in a random environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 460
EP  - 478
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/
LA  - ru
ID  - TVP_2020_65_3_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On the times of attaining high levels by a random walk in a random environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 460-478
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/
%G ru
%F TVP_2020_65_3_a1
V. I. Afanasyev. On the times of attaining high levels by a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 460-478. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a1/

[1] F. Solomon, “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl

[2] G. A. Ritter, Random walk in a random environment, critical case, Thesis (Ph.D.), Cornell Univ., Cornell, USA, 1976, 78 pp. | MR

[3] V. I. Afanasyev, “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567 | DOI | DOI | MR | Zbl

[4] V. I. Afanasyev, “Two-boundary problem for a random walk in a random environment”, Theory Probab. Appl., 63:3 (2019), 339–350 | DOI | DOI | MR | Zbl

[5] H. Kesten, M. V. Kozlov, F. Spitzer, “A limit law for random walk in a random environment”, Compositio Math., 30:2 (1975), 145–168 | MR | Zbl

[6] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl

[7] J. Jacod, A. N. Shiryaev, “Ch. I–VI”, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 1987, 1–347 | DOI | MR | MR | Zbl | Zbl

[8] V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Aide-mémoire de théorie des probabilités et de statistique mathématique, Mir, Moscow, 1983, 581 pp. | MR | MR | Zbl | Zbl

[9] V. I. Afanasev, “Dvugranichnaya zadacha dlya sluchainogo bluzhdaniya s ogranicheniem na maksimalnoe priraschenie”, Diskret. matem., 31:3 (2019), 3–16 | DOI | MR