Optimality of threshold stopping times for diffusion processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 437-459
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is concerned with the optimal stopping problem for Itô
diffusion processes over a class of stopping times. Necessary and sufficient optimality
conditions are studied for a parametrically
specified class of stopping times. A detailed analysis is given for the case of
one-dimensional diffusion processes and threshold stopping times. Necessary
and sufficient conditions are put forward for optimality of 
a threshold stopping time over
all stopping times. A number of relations are obtained between the
solution of the optimal stopping problem over the class of threshold moments
and the solution of the free-boundary problem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
diffusion processes
Keywords: optimal stopping, threshold stopping time, free-boundary problem.
                    
                  
                
                
                Keywords: optimal stopping, threshold stopping time, free-boundary problem.
@article{TVP_2020_65_3_a0,
     author = {V. I. Arkin},
     title = {Optimality of threshold stopping times for diffusion processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {437--459},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a0/}
}
                      
                      
                    V. I. Arkin. Optimality of threshold stopping times for diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 437-459. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a0/
