Keywords: optimal stopping, threshold stopping time, free-boundary problem.
@article{TVP_2020_65_3_a0,
author = {V. I. Arkin},
title = {Optimality of threshold stopping times for diffusion processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {437--459},
year = {2020},
volume = {65},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a0/}
}
V. I. Arkin. Optimality of threshold stopping times for diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 437-459. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a0/
[1] A. A. Novikov, A. N. Shiryaev, “On an effective solution of the optimal stopping problem for random walks”, Theory Probab. Appl., 49:2 (2005), 344–354 | DOI | DOI | MR | Zbl
[2] A. Dixit, R. S. Pindyck, S. Sødal, “A markup interpretation of optimal investment rules”, Economic J., 109:455 (1999), 179–189 | DOI
[3] A. K. Dixit, R. S. Pindyck, Investment under uncertainty, Princeton Univ. Press, Princeton, 1994, vi+468 pp. | DOI
[4] R. McDonald, D. Siegel, “The value of waiting to invest”, Quart. J. Econom., 101:4 (1986), 707–727 | DOI
[5] V. I. Arkin, A. D. Slastnikov, “Investitsionnye ozhidaniya, stimulirovanie investitsii i nalogovye reformy”, Ekonomika i matematicheskie metody, 43:2 (2007), 76–100
[6] V. I. Arkin, A. D. Slastnikov, “A variational approach to optimal stopping problems for diffusion processes”, Theory Probab. Appl., 53:3 (2009), 467–480 | DOI | DOI | MR | Zbl
[7] A. N. Shiryaev, Essentials of stochastic finance. Facts, models, theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, xvi+834 pp. | DOI | MR | Zbl
[8] H. Jönsson, A. G. Kukush, D. S. Silvestrov, “Threshold structure of optimal stopping strategies for American type options. I”, Theory Probab. Math. Statist., 71 (2005), 93–103 | DOI | MR | Zbl
[9] S. Dayanik, I. Karatzas, “On the optimal stopping problem for one-dimensional diffusions”, Stochastic Process. Appl., 107:2 (2003), 173–212 | DOI | MR | Zbl
[10] L. H. R. Alvarez, “On the properties of $r$-excessive mappings for a class of diffusions”, Ann. Appl. Probab., 13:4 (2003), 1517–1533 | DOI | MR | Zbl
[11] S. Villeneuve, “On threshold strategies and the smooth-fit principle for optimal stopping problems”, J. Appl. Probab., 44:1 (2007), 181–198 | DOI | MR | Zbl
[12] V. I. Arkin, “Threshold strategies in optimal stopping problem for one-dimensional diffusion processes”, Theory Probab. Appl., 59:2 (2015), 311–319 | DOI | DOI | MR | Zbl
[13] F. Crocce, E. Mordecki, “Explicit solutions in one-sided optimal stopping problems for one-dimensional diffusions”, Stochastics, 86:3 (2014), 491–509 | DOI | MR | Zbl
[14] G. Peskir, A. Shiryaev, Optimal stopping and free-boundary problems, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2006, xxii+500 pp. | DOI | MR | Zbl
[15] D. Lamberton, M. Zervos, “On the optimal stopping of a one-dimensional diffusion”, Electron. J. Probab., 18 (2013), 34, 49 pp. | DOI | MR | Zbl
[16] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 1991, xxiii+470 pp. | DOI | MR | Zbl
[17] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Grundlehren Math. Wiss., 125, 2nd corr. printing, Springer-Verlag, Berlin–New York, 1974, xv+321 pp. | DOI | MR | Zbl | Zbl
[18] A. N. Borodin, P. Salminen, Handbook of Brownian motion — facts and formulae, Probab. Appl., Birkhäuser Verlag, 1996, xiv+462 pp. | DOI | MR | Zbl
[19] L. H. R. Alvarez, “Reward functionals, salvage values, and optimal stopping”, Math. Methods Oper. Res., 54:2 (2001), 315–337 | DOI | MR | Zbl
[20] I. Karatzas, “Gittins indices in the dynamic allocation problem for diffusion processes”, Ann. Probab., 12:1 (1984), 173–192 | DOI | MR | Zbl