Optimality of threshold stopping times for diffusion processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 437-459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the optimal stopping problem for Itô diffusion processes over a class of stopping times. Necessary and sufficient optimality conditions are studied for a parametrically specified class of stopping times. A detailed analysis is given for the case of one-dimensional diffusion processes and threshold stopping times. Necessary and sufficient conditions are put forward for optimality of a threshold stopping time over all stopping times. A number of relations are obtained between the solution of the optimal stopping problem over the class of threshold moments and the solution of the free-boundary problem.
Mots-clés : diffusion processes
Keywords: optimal stopping, threshold stopping time, free-boundary problem.
@article{TVP_2020_65_3_a0,
     author = {V. I. Arkin},
     title = {Optimality of threshold stopping times for diffusion processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {437--459},
     year = {2020},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a0/}
}
TY  - JOUR
AU  - V. I. Arkin
TI  - Optimality of threshold stopping times for diffusion processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 437
EP  - 459
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a0/
LA  - ru
ID  - TVP_2020_65_3_a0
ER  - 
%0 Journal Article
%A V. I. Arkin
%T Optimality of threshold stopping times for diffusion processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 437-459
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a0/
%G ru
%F TVP_2020_65_3_a0
V. I. Arkin. Optimality of threshold stopping times for diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 3, pp. 437-459. http://geodesic.mathdoc.fr/item/TVP_2020_65_3_a0/

[1] A. A. Novikov, A. N. Shiryaev, “On an effective solution of the optimal stopping problem for random walks”, Theory Probab. Appl., 49:2 (2005), 344–354 | DOI | DOI | MR | Zbl

[2] A. Dixit, R. S. Pindyck, S. Sødal, “A markup interpretation of optimal investment rules”, Economic J., 109:455 (1999), 179–189 | DOI

[3] A. K. Dixit, R. S. Pindyck, Investment under uncertainty, Princeton Univ. Press, Princeton, 1994, vi+468 pp. | DOI

[4] R. McDonald, D. Siegel, “The value of waiting to invest”, Quart. J. Econom., 101:4 (1986), 707–727 | DOI

[5] V. I. Arkin, A. D. Slastnikov, “Investitsionnye ozhidaniya, stimulirovanie investitsii i nalogovye reformy”, Ekonomika i matematicheskie metody, 43:2 (2007), 76–100

[6] V. I. Arkin, A. D. Slastnikov, “A variational approach to optimal stopping problems for diffusion processes”, Theory Probab. Appl., 53:3 (2009), 467–480 | DOI | DOI | MR | Zbl

[7] A. N. Shiryaev, Essentials of stochastic finance. Facts, models, theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, xvi+834 pp. | DOI | MR | Zbl

[8] H. Jönsson, A. G. Kukush, D. S. Silvestrov, “Threshold structure of optimal stopping strategies for American type options. I”, Theory Probab. Math. Statist., 71 (2005), 93–103 | DOI | MR | Zbl

[9] S. Dayanik, I. Karatzas, “On the optimal stopping problem for one-dimensional diffusions”, Stochastic Process. Appl., 107:2 (2003), 173–212 | DOI | MR | Zbl

[10] L. H. R. Alvarez, “On the properties of $r$-excessive mappings for a class of diffusions”, Ann. Appl. Probab., 13:4 (2003), 1517–1533 | DOI | MR | Zbl

[11] S. Villeneuve, “On threshold strategies and the smooth-fit principle for optimal stopping problems”, J. Appl. Probab., 44:1 (2007), 181–198 | DOI | MR | Zbl

[12] V. I. Arkin, “Threshold strategies in optimal stopping problem for one-dimensional diffusion processes”, Theory Probab. Appl., 59:2 (2015), 311–319 | DOI | DOI | MR | Zbl

[13] F. Crocce, E. Mordecki, “Explicit solutions in one-sided optimal stopping problems for one-dimensional diffusions”, Stochastics, 86:3 (2014), 491–509 | DOI | MR | Zbl

[14] G. Peskir, A. Shiryaev, Optimal stopping and free-boundary problems, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2006, xxii+500 pp. | DOI | MR | Zbl

[15] D. Lamberton, M. Zervos, “On the optimal stopping of a one-dimensional diffusion”, Electron. J. Probab., 18 (2013), 34, 49 pp. | DOI | MR | Zbl

[16] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 1991, xxiii+470 pp. | DOI | MR | Zbl

[17] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Grundlehren Math. Wiss., 125, 2nd corr. printing, Springer-Verlag, Berlin–New York, 1974, xv+321 pp. | DOI | MR | Zbl | Zbl

[18] A. N. Borodin, P. Salminen, Handbook of Brownian motion — facts and formulae, Probab. Appl., Birkhäuser Verlag, 1996, xiv+462 pp. | DOI | MR | Zbl

[19] L. H. R. Alvarez, “Reward functionals, salvage values, and optimal stopping”, Math. Methods Oper. Res., 54:2 (2001), 315–337 | DOI | MR | Zbl

[20] I. Karatzas, “Gittins indices in the dynamic allocation problem for diffusion processes”, Ann. Probab., 12:1 (1984), 173–192 | DOI | MR | Zbl