A~complement to the Grigoriev theorem for the Kabanov model
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 409-419

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide an equivalent characterization of the absence of arbitrage opportunity for the bid and ask financial market model. This result, which is an analogue of the Dalang–Morton–Willinger theorem formulated for discrete-time financial market models without friction, supplements and improves the Grigoriev theorem for conic models in the two-dimensional case by showing that the set of all terminal liquidation values is closed.
Keywords: proportional transaction costs, absence of arbitrage opportunities, bid and ask prices, consistent price systems.
Mots-clés : liquidation value
@article{TVP_2020_65_2_a6,
     author = {J. Zhao and E. Lepinette},
     title = {A~complement to the {Grigoriev} theorem for the {Kabanov} model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {409--419},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a6/}
}
TY  - JOUR
AU  - J. Zhao
AU  - E. Lepinette
TI  - A~complement to the Grigoriev theorem for the Kabanov model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 409
EP  - 419
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a6/
LA  - ru
ID  - TVP_2020_65_2_a6
ER  - 
%0 Journal Article
%A J. Zhao
%A E. Lepinette
%T A~complement to the Grigoriev theorem for the Kabanov model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 409-419
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a6/
%G ru
%F TVP_2020_65_2_a6
J. Zhao; E. Lepinette. A~complement to the Grigoriev theorem for the Kabanov model. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 409-419. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a6/