A~complement to the Grigoriev theorem for the Kabanov model
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 409-419
Voir la notice de l'article provenant de la source Math-Net.Ru
We provide an equivalent characterization of the absence of arbitrage
opportunity for the bid and ask financial market model. This result, which
is an analogue of the Dalang–Morton–Willinger theorem formulated for
discrete-time financial market models without friction, supplements and
improves the Grigoriev theorem for conic models in the two-dimensional
case by showing that the set of all terminal liquidation values is closed.
Keywords:
proportional transaction costs, absence of arbitrage opportunities, bid and ask prices, consistent price systems.
Mots-clés : liquidation value
Mots-clés : liquidation value
@article{TVP_2020_65_2_a6,
author = {J. Zhao and E. Lepinette},
title = {A~complement to the {Grigoriev} theorem for the {Kabanov} model},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {409--419},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a6/}
}
J. Zhao; E. Lepinette. A~complement to the Grigoriev theorem for the Kabanov model. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 409-419. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a6/