Incentive-compatible surveys via posterior probabilities
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 368-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of eliciting truthful responses to a survey question when the respondents share a common prior that the survey planner is agnostic about. The planner would therefore like to have a “universal” mechanism, which would induce honest answers for all possible priors. If the planner also requires a locality condition that ensures that the mechanism payoffs are determined by the respondents' posterior probabilities of the true state of nature, we prove that, under additional smoothness and sensitivity conditions, the payoff in the truth-telling equilibrium must be a logarithmic function of those posterior probabilities. Moreover, the respondents are necessarily ranked according to those probabilities. Finally, we discuss implementation issues.
Keywords: proper scoring rules, robust/universal mechanisms, Bayesian truth serum, ranking experts.
Mots-clés : mechanism implementation
@article{TVP_2020_65_2_a5,
     author = {J. Cvitanic and D. Prelec and S. Radas and H. Sikic},
     title = {Incentive-compatible surveys via posterior probabilities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {368--408},
     year = {2020},
     volume = {65},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a5/}
}
TY  - JOUR
AU  - J. Cvitanic
AU  - D. Prelec
AU  - S. Radas
AU  - H. Sikic
TI  - Incentive-compatible surveys via posterior probabilities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 368
EP  - 408
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a5/
LA  - ru
ID  - TVP_2020_65_2_a5
ER  - 
%0 Journal Article
%A J. Cvitanic
%A D. Prelec
%A S. Radas
%A H. Sikic
%T Incentive-compatible surveys via posterior probabilities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 368-408
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a5/
%G ru
%F TVP_2020_65_2_a5
J. Cvitanic; D. Prelec; S. Radas; H. Sikic. Incentive-compatible surveys via posterior probabilities. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 368-408. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a5/

[1] D. J. Aldous, “Exchangeability and related topics”, École d'été de probabilités de Saint-Flour XIII — 1983, Lecture Notes in Math., 1117, Springer, Berlin, 1985, 1–198 | DOI | MR | Zbl

[2] A. Baillon, “Bayesian markets to elicit private information”, Proc. Natl. Acad. Sci. USA, 114:30 (2017), 7958–7962 | DOI | MR | Zbl

[3] D. Bergemann, S. Morris, “An introduction to robust mechanism design”, Foundations and Trends in Microeconomics, 8:3 (2012), 169–230 | DOI

[4] J. M. Bernardo, “Expected information as expected utility”, Ann. Statist., 7:3 (1979), 686–690 | DOI | MR | Zbl

[5] T. Börgers, An introduction to the theory of mechanism design, With a chapter by D. Krähmer, R. Strausz, Oxford Univ. Press, New York, 2015, xv+246 pp. | DOI | Zbl

[6] Yuan Shih Chow, H. Teicher, Probability Theory. Independence, interchangeability, martingales, Springer Texts Statist., 3rd ed., Springer-Verlag, New York, 1997, xxii+488 pp. | DOI | MR | Zbl

[7] J. Cvitanić, D. Prelec, S. Radas, H. Šikić, “Game of duels: information-theoretic axiomatization of scoring rules”, IEEE Trans. Inform. Theory, 65:1 (2019), 530–537 | DOI | MR | Zbl

[8] J. Cvitanić, D. Prelec, B. Riley, B. Tereick, “Honesty via choice-matching”, AER: Insights, 1:2 (2019), 179–192 | DOI

[9] A. Dasgupta, A. Ghosh, “Crowdsourced judgement elicitation with endogenous proficiency”, WWW'13: Proceedings of the 22nd ACM international World Wide Web conference (Rio de Janeiro, 2013), ACM, New York, 2013, 319–330 | DOI

[10] R. Frongillo, J. Witkowski, “A geometric perspective on minimal peer prediction”, ACM Trans. Econ. Comput., 5:3 (2017), 17, 27 pp. | DOI | MR

[11] T. Gneiting, A. E. Raftery, “Strictly proper scoring rules, prediction, and estimation”, J. Amer. Statist. Assoc., 102:477 (2007), 359–378 | DOI | MR | Zbl

[12] P. J. Howie, Ying Wang, J. Tsai, “Predicting new product adoption using Bayesian truth serum”, J. Med. Market., 11:1 (2011), 6–16 | DOI

[13] R. Jurca, B. Faltings, “Robust incentive-compatible feedback payments”, TADA 2006, AMEC 2006: Agent-mediated electronic commerce. Automated negotiation and strategy design for electronic markets (Hakodate, Japan, 2006), Lecture Notes in Comput. Sci., 4452, Lecture Notes in Artificial Intelligence, Springer, Berlin, 2007, 204–218 | DOI

[14] Yuqing Kong, G. Schoenebeck, “An information theoretic framework for designing information elicitation mechanisms that reward truth-telling”, ACM Trans. Econ. Comput., 7:1 (2019), 2, 33 pp. | DOI | MR

[15] A. Kukla-Gryz, J. Tyrowicz, M. Krawczyk, K. Siwiński, “We all do it, but are we willing to admit? Incentivizing digital pirates' confessions”, Appl. Econ. Lett., 22:3 (2015), 184–188 | DOI

[16] Yang Liu, Juntao Wang, Yiling Chen, Surrogate scoring rules, 2020, arXiv: 1802.09158

[17] T. A. Loughran, R. Paternoster, K. J. Thomas, “Incentivizing responses to self-report questions in perceptual deterrence studies: an investigation of the validity of deterrence theory using Bayesian truth serum”, J. Quant. Criminol., 30:4 (2014), 677–707 | DOI

[18] E. Maskin, T. Sjöström, “Implementation theory”, Handbook of social choice and welfare, v. 1, Handbooks in Econom., 19, Elsevier/North-Holland, Amsterdam, 2002, 237–288 | DOI | MR | Zbl

[19] J. McCarthy, “Measures of the value of information”, Proc. Natl. Acad. Sci. USA, 42:9 (1956), 654–655 | DOI | Zbl

[20] S. R. Miller, B. P. Bailey, A. Kirlik, “Exploring the utility of Bayesian truth serum for assessing design knowledge”, Human–Computer Interaction, 29:5-6 (2014), 487–515 | DOI

[21] N. Miller, P. Resnick, R. Zeckhauser, “Eliciting informative feedback: the peer-prediction method”, Manag. Sci., 51:9 (2005), 1359–1373 | DOI

[22] R. B. Myerson, “Optimal auction design”, Math. Oper. Res., 6:1 (1981), 58–73 | DOI | MR | Zbl

[23] T. Offerman, J. Sonnemans, G. Van De Kuilen, P. P. Wakker, “A truth serum for non-Bayesians: correcting proper scoring rules for risk attitudes”, Rev. Econom. Stud., 76:4 (2009), 1461–1489 | DOI | MR | Zbl

[24] D. Prelec, “A Bayesian truth serum for subjective data”, Science, 306:5695 (2004), 462–466 | DOI

[25] D. Prelec, H. S. Seung, J. McCoy, “A solution to the single-question crowd wisdom problem”, Nature, 541 (2017), 532–535 | DOI

[26] G. Radanovic, B. Faltings, “A robust Bayesian truth serum for non-binary signals”, AAAI'13: Proceedings of the 27th AAAI conference on artificial intelligence, AAAI Press, 2013, 833–839

[27] G. Radanovic, B. Faltings, “Incentives for truthful information elicitation of continuous signals”, AAAI'14: Proceedings of the 28th AAAI conference on artificial intelligence, AAAI Press, 2014, 770–776

[28] L. J. Savage, “Elicitation of personal probabilities and expectations”, J. Amer. Statist. Assoc., 66:336 (1971), 783–801 | DOI | MR | Zbl

[29] M. J. Schervish, “A general method for comparing probability assessors”, Ann. Statist., 17:4 (1989), 1856–1879 | DOI | MR | Zbl

[30] K. H. Schlag, J. J. van der Weele, “Eliciting probabilities, means, medians, variances and covariances without assuming risk neutrality”, Theor. Econ. Lett., 3:1 (2013), 38–42 | DOI

[31] R. V. Vohra, Paths, cycles and mechanism design, Tech. rep., Northwestern Univ., Evanston, IL, 2007, 83 pp.

[32] B. Waggoner, Yiling Chen, “Information elicitation sans verification”, Proceedings of the 3rd workshop on social computing and user generated content (SC-13) (Philadelphia, PA, 2013), 2013 http://yiling.seas.harvard.edu/publications/

[33] J. Witkowski, Robust peer prediction mechanisms, Ph.D. Diss., Albert-Ludwigs-Universität, Freiburg, 2014, 135 pp. https://freidok.uni-freiburg.de/data/10054

[34] J. Witkowski, D. C. Parkes, “A robust Bayesian truth serum for small populations”, AAAI'12: Proceedings of the 26th AAAI conference on artificial intelligence, AAAI Press, 2012, 1492–1498

[35] J. Witkowski, D. C. Parkes, “Learning the prior in minimal peer prediction”, Proceedings of the 3rd workshop on social computing and user generated content (SC-13) (Philadelphia, PA, 2013), 2013 http://econcs.seas.harvard.edu/files/econcs/files/witkowski_ec13.pdf

[36] P. Zhang, Yiling Chen, “Elicitability and knowledge-free elicitation with peer prediction”, AAMAS'14: Proceedings of the 2014 international conference on autonomous agents and multi-agent systems (Paris, 2014), IFAAMAS, Richland, SC, 2014, 245–252 http://yiling.seas.harvard.edu/publications/