Keywords: measure, weak convergence, Markov decision process.
@article{TVP_2020_65_2_a4,
author = {E. A. Feinberg and P. O. Kas'yanov and Y. Liang},
title = {Fatou's lemma in its classical form and {Lebesgue's} convergence theorems for varying measures with applications to {Markov} decision processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {338--367},
year = {2020},
volume = {65},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a4/}
}
TY - JOUR AU - E. A. Feinberg AU - P. O. Kas'yanov AU - Y. Liang TI - Fatou's lemma in its classical form and Lebesgue's convergence theorems for varying measures with applications to Markov decision processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 338 EP - 367 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a4/ LA - ru ID - TVP_2020_65_2_a4 ER -
%0 Journal Article %A E. A. Feinberg %A P. O. Kas'yanov %A Y. Liang %T Fatou's lemma in its classical form and Lebesgue's convergence theorems for varying measures with applications to Markov decision processes %J Teoriâ veroâtnostej i ee primeneniâ %D 2020 %P 338-367 %V 65 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a4/ %G ru %F TVP_2020_65_2_a4
E. A. Feinberg; P. O. Kas'yanov; Y. Liang. Fatou's lemma in its classical form and Lebesgue's convergence theorems for varying measures with applications to Markov decision processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 338-367. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a4/
[1] D. P. Bertsekas, S. E. Shreve, Stochastic optimal control. The discrete time case, Reprint of 1978 original, Athena Scientific, Belmont, MA, 1996, 330 pp. | MR | MR | Zbl | Zbl
[2] P. Billingsley, Convergence of probability measures, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1999, x+277 pp. | DOI | MR | MR | Zbl
[3] E. A. Feinberg, “Optimality conditions for inventory control”, Optimization challenges in complex, networked, and risky systems, Tutor. Oper. Res., INFORMS, Cantonsville, MD, 2016, 14–44 | DOI
[4] E. A. Feinberg, P. O. Kasyanov, Y. Liang, “Fatou's lemma for weakly converging measures under the uniform integrability condition”, Teoriya veroyatn. i ee primen., 64:4 (2019), 771–790 ; Theory Probab. Appl., 64:4 (2019), 615–630 ; (2018), arXiv: 1807.07931 | DOI | MR | Zbl | DOI
[5] E. A. Feinberg, P. O. Kasyanov, N. V. Zadoianchuk, “Average cost Markov decision processes with weakly continuous transition probabilities”, Math. Oper. Res., 37:4 (2012), 591–607 | DOI | MR | Zbl
[6] E. A. Feinberg, P. O. Kasyanov, N. V. Zadoianchuk, “Fatou's lemma for weakly converging probabilities”, Teoriya veroyatn. i ee primen., 58:4 (2013), 812–818 ; Theory Probab. Appl., 58:4 (2014), 683–689 | DOI | Zbl | DOI | MR
[7] E. A. Feinberg, P. O. Kasyanov, N. V. Zadoianchuk, “Berge's theorem for noncompact image sets”, J. Math. Anal. Appl., 397:1 (2013), 255–259 | DOI | MR | Zbl
[8] E. A. Feinberg, P. O. Kasyanov, M. Z. Zgurovsky, “Convergence of probability measures and Markov decision models with incomplete information”, Stokhasticheskoe ischislenie, martingaly i ikh primeneniya, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Alberta Nikolaevicha Shiryaeva, Tr. MIAN, 287, MAIK “Nauka/Interperiodika”, M., 2014, 103–124 | DOI | MR
[9] E. A. Feinberg, P. O. Kasyanov, M. Z. Zgurovsky, “Uniform Fatou's lemma”, J. Math. Anal. Appl., 444:1 (2016), 550–567 | DOI | MR | Zbl
[10] E. A. Feinberg, P. O. Kasyanov, M. Z. Zgurovsky, “Partially observable total-cost Markov decision processes with weakly continuous transition probabilities”, Math. Oper. Res., 41:2 (2016), 656–681 | DOI | MR | Zbl
[11] E. A. Feinberg, M. E. Lewis, “On the convergence of optimal actions for Markov decision processes and the optimality of $(s,S)$ inventory policies”, Naval Res. Logist., 65:8 (2018), 619–637 | DOI | MR | Zbl
[12] E. A. Feinberg, Y. Liang, “On the optimality equation for average cost Markov decision processes and its validity for inventory control”, Ann. Oper. Res., Publ. online: 2017 | DOI
[13] O. Hernández-Lerma, “Average optimality in dynamic programming on Borel spaces — unbounded costs and controls”, Systems Control Lett., 17:3 (1991), 237–242 | DOI | MR | Zbl
[14] O. Hernández-Lerma, J. B. Lasserre, Discrete-time Markov control processes. Basic optimality criteria, Appl. Math. (N. Y.), 30, Springer-Verlag, New York, 1996, xiv+216 pp. | DOI | MR | Zbl
[15] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | MR | MR | Zbl | Zbl
[16] Yu. M. Kabanov, R. Sh. Liptser, “On convergence in variation of the distributions of multivariate point processes”, Z. Wahrsch. Verw. Gebiete, 63:4 (1983), 475–485 | DOI | MR | Zbl
[17] M. V. Kartashov, Imovirnist, protsesi, statistika, Kiïv. un-t, Kiïv, 2008, 494 pp.
[18] H. L. Royden, Real analysis, 2nd ed., The Macmillan Co., New York, 1968, xii+349 pp. | MR | Zbl
[19] M. Schäl, “Average optimality in dynamic programming with general state space”, Math. Oper. Res., 18:1 (1993), 163–172 | DOI | MR | Zbl
[20] R. Serfozo, “Convergence of Lebesgue integrals with varying measures”, Sankhyā Ser. A, 44:3 (1982), 380–402 | MR | Zbl
[21] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+623 pp. | DOI | MR | MR | Zbl | Zbl
[22] A. W. van der Vaart, Asymptotic statistics, Camb. Ser. Stat. Probab. Math., 3, Cambridge Univ. Press, Cambridge, 1998, xvi+443 pp. | DOI | MR | Zbl