On the ruin problem with investment when the risky asset is a semimartingale
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 312-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the ruin problem with investment in a general framework where the business part $X$ is a Lévy process and the return on investment $R$ is a semimartingale. Under some conditions, we obtain upper and lower bounds on the finite and infinite time ruin probabilities as well as the logarithmic asymptotic for them. When $R$ is a Lévy process, we retrieve some well-known results. Finally, we obtain conditions on the exponential functionals of $R$ for ruin with probability $1$, and we express these conditions using the semimartingale characteristics of $R$ in the case of Lévy processes.
Keywords: ruin probability, investment, semimartingale, upper and lower estimates, logarithmic asymptotic, ruin with probability 1.
Mots-clés : Lévy process
@article{TVP_2020_65_2_a3,
     author = {J. Spielmann and L. Vostrikova},
     title = {On the ruin problem with investment when the risky asset is a~semimartingale},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {312--337},
     year = {2020},
     volume = {65},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a3/}
}
TY  - JOUR
AU  - J. Spielmann
AU  - L. Vostrikova
TI  - On the ruin problem with investment when the risky asset is a semimartingale
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 312
EP  - 337
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a3/
LA  - ru
ID  - TVP_2020_65_2_a3
ER  - 
%0 Journal Article
%A J. Spielmann
%A L. Vostrikova
%T On the ruin problem with investment when the risky asset is a semimartingale
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 312-337
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a3/
%G ru
%F TVP_2020_65_2_a3
J. Spielmann; L. Vostrikova. On the ruin problem with investment when the risky asset is a semimartingale. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 312-337. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a3/

[1] S. Asmussen, Ruin probabilities, Adv. Ser. Stat. Sci. Appl. Probab., 2, World Sci. Publ., River Edge, NJ, 2000, xii+385 pp. | DOI | MR | Zbl

[2] A. Behme, “Exponential functionals of Lévy processes with jumps”, ALEA Lat. Am. J. Probab. Math. Stat., 12:1 (2015), 375–397 | MR | Zbl

[3] A. Behme, A. Lindner, “On exponential functionals of Lévy processes”, J. Theoret. Probab., 28:2 (2015), 681–720 | DOI | MR | Zbl

[4] K. Bichteler, J. Jacod, “Calcul de Malliavin pour les diffusions avec sauts: existence d'une densité dans le cas unidimensionnel”, Séminaire de probabilités XVII (1981/82), Lecture Notes in Math., 986, Springer, Berlin, 1983, 132–157 | DOI | MR | Zbl

[5] J. Bertoin, A. Lindner, R. Maller, “On continuity properties of the law of integrals of Lévy processes”, Séminaire de probabilités XLI, Lecture Notes in Math., 1934, Springer, Berlin, 2008, 137–159 | DOI | MR | Zbl

[6] J. Bertoin, M. Yor, “Exponential functionals of Lévy processes”, Probab. Surv., 2 (2005), 191–212 | DOI | MR | Zbl

[7] A. N. Borodin, P. Salminen, Handbook of Brownian motion — facts and formulae, Probab. Appl., 2nd ed., Birkhäuser Verlag, 2002, xvi+672 pp. | DOI | MR | Zbl

[8] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman Hall/CRC Financ. Math. Ser., Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+535 pp. | MR | Zbl

[9] P. Carmona, F. Petit, M. Yor, “On the distribution and asymptotic results for exponential functionals of Lévy processes”, Exponential functionals and principal values related to Brownian motion, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1997, 73–130 | MR | Zbl

[10] D. Dufresne, “The distribution of a perpetuity, with applications to risk theory and pension funding”, Scand. Actuar. J., 1990:1-2 (1990), 39–79 | DOI | MR | Zbl

[11] K. B. Erickson, R. A. Maller, “Generalised Ornstein–Uhlenbeck processes and the convergence of Lévy integrals”, Séminaire de probabilités XXXVIII, Lecture Notes in Math., Springer, Berlin, 2005, 70–94 | DOI | MR | Zbl

[12] A. Frolova, Yu. Kabanov, S. Pergamenshchikov, “In the insurance business risky investments are dangerous”, Finance Stoch., 6:2 (2002), 227–235 | DOI | MR | Zbl

[13] H. K. Gjessing, J. Paulsen, “Present value distributions with applications to ruin theory and stochastic equations”, Stochastic Process. Appl., 71:1 (1997), 123–144 | DOI | MR | Zbl

[14] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 1987, xviii+601 pp. | DOI | MR | MR | MR | Zbl | Zbl

[15] Yu. Kabanov, S. Pergamenshchikov, “In the insurance business risky investments are dangerous: the case of negative risk sums”, Finance Stoch., 20:2 (2016), 355–379 | DOI | MR | Zbl

[16] Yu. Kabanov, S. Pergamenshchikov, The ruin problem for Lévy-driven linear stochastic equations with applications to actuarial models with negative risk sums, 2018, arXiv: 1604.06370

[17] V. Kalashnikov, R. Norberg, “Power tailed ruin probabilities in the presence of risky investments”, Stochastic Process. Appl., 98:2 (2002), 211–228 | DOI | MR | Zbl

[18] C. Klüppelberg, A. E. Kyprianou, R. A. Maller, “Ruin probabilities and overshoots for general Lévy insurance risk processes”, Ann. Appl. Probab., 14:4 (2004), 1766–1801 | DOI | MR | Zbl

[19] A. Kuznetsov, J. C. Pardo, M. Savov, “Distributional properties of exponential functionals of Lévy processes”, Electron. J. Probab., 17 (2012), 8, 35 pp. | DOI | MR | Zbl

[20] A. E. Kyprianou, Fluctuations of Lévy processes with applications. Introductory lectures, Universitext, 2nd ed., Springer, Heildelberg, 2014, xviii+455 pp. | DOI | MR | Zbl

[21] R. Sh. Liptser, A. N. Shiryayev, Theory of martingales, Math. Appl. (Soviet Ser.), 49, Kluwer Acad. Publ., Dordrecht, 1989, xiv+792 pp. | DOI | MR | MR | Zbl | Zbl

[22] C. Marinelli, M. Röckner, “On maximal inequalities for purely discontinuous martingales in infinite dimensions”, Séminaire de probabilités XLVI, Lecture Notes in Math., 2123, Springer, Cham, 2014, 293–315 | DOI | MR | Zbl

[23] A. A. Novikov, “On discontinuous martingales”, Theory Probab. Appl., 20:1 (1975), 11–26 | DOI | MR | Zbl

[24] J. C. Pardo, V. Rivero, K. van Schaik, “On the density of exponential functionals of Lévy processes”, Bernoulli, 19:5A (2013), 1938–1964 | DOI | MR | Zbl

[25] P. Patie, M. Savov, “Bernstein-gamma functions and exponential functionals of Lévy processes”, Electron. J. Probab., 23 (2016), 75, 101 pp. ; (2018), arXiv: 1604.05960 | DOI | MR | Zbl

[26] J. Paulsen, “Risk theory in a stochastic economic environment”, Stochastic Process. Appl., 46:2 (1993), 327–361 | DOI | MR | Zbl

[27] J. Paulsen, Stochastic calculus with applications to risk theory, Lecture notes, Univ. of Bergen, Univ. of Copenhagen, 1996

[28] J. Paulsen, “Sharp conditions for certain ruin in a risk process with stochastic return on investments”, Stochastic Process. Appl., 75:1 (1998), 135–148 | DOI | MR | Zbl

[29] J. Paulsen, “On Cramér-like asymptotics for risk processes with stochastic return on investments”, Ann. Appl. Probab., 12:4 (2002), 1247–1260 | DOI | MR | Zbl

[30] J. Paulsen, “Ruin models with investment income”, Probab. Surv., 5 (2008), 416–434 | DOI | MR | Zbl

[31] S. Pergamenshchikov, O. Zeitouny, “Ruin probability in the presence of risky investments”, Stochastic Process. Appl., 116:2 (2006), 267–278 | DOI | MR | Zbl

[32] V. Rivero, “Tail asymptotics for exponential functionals of Lévy processes: the convolution equivalent case”, Ann. Inst. Henri Poincaré Probab. Stat., 48:4 (2012), 1081–1102 | DOI | MR | Zbl

[33] P. Salminen, L. Vostrikova, “On exponential functionals of processes with independent increments”, Teoriya veroyatn. i ee primen., 63:2 (2018), 330–357 | DOI | MR | Zbl

[34] P. Salminen, L. Vostrikova, “On moments of integral exponential functionals of additive processes”, Statist. Probab. Lett., 146 (2019), 139–146 | DOI | MR | Zbl

[35] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math., 68, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 2013, xiv+521 pp. | MR | Zbl

[36] J. Spielmann, Classification of the bounds on the probability of ruin for Lévy processes with light-tailed jumps, 2018, arXiv: 1709.10295

[37] L. Vostrikova, On distributions of exponential functionals of the processes with independent increments, 2018, arXiv: 1804.07069

[38] Kam C. Yuen, Guojing Wang, Kai W. Ng, “Ruin probabilities for a risk process with stochastic return on investments”, Stochastic Process. Appl., 110:2 (2004), 259–274 | DOI | MR | Zbl