@article{TVP_2020_65_2_a2,
author = {T. Nguyen and S. M. Pergamenshchikov},
title = {Approximate hedging with constant proportional transaction costs in financial markets with jumps},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {281--311},
year = {2020},
volume = {65},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a2/}
}
TY - JOUR AU - T. Nguyen AU - S. M. Pergamenshchikov TI - Approximate hedging with constant proportional transaction costs in financial markets with jumps JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 281 EP - 311 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a2/ LA - ru ID - TVP_2020_65_2_a2 ER -
%0 Journal Article %A T. Nguyen %A S. M. Pergamenshchikov %T Approximate hedging with constant proportional transaction costs in financial markets with jumps %J Teoriâ veroâtnostej i ee primeneniâ %D 2020 %P 281-311 %V 65 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a2/ %G ru %F TVP_2020_65_2_a2
T. Nguyen; S. M. Pergamenshchikov. Approximate hedging with constant proportional transaction costs in financial markets with jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 281-311. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a2/
[1] Hyungsok Ahn, M. Dayal, E. Grannan, G. Swindle, “Option replication with transaction costs: general diffusion limits”, Ann. Appl. Probab., 8:3 (1998), 676–707 | DOI | MR | Zbl
[2] L. B. G. Andersen, V. V. Piterbarg, “Moment explosions in stochastic volatility models”, Finance Stoch., 11:1 (2007), 29–50 | DOI | MR | Zbl
[3] M. Baran, “Quantile hedging on markets with proportional transaction costs”, Appl. Math. (Warsaw), 30:2 (2010), 193–208 | DOI | MR | Zbl
[4] M. Barski, Quantile hedging for multiple assets derivatives, 2011, arXiv: 1010.5810v2
[5] K. Bichteler, J. Jacod, “Random measures and stochastic integration”, Theory and application of random fields (Bangalore, 1982), Lect. Notes Control Inf. Sci., 49, Springer, Berlin, 1983, 1–18 | DOI | MR | Zbl
[6] M. Bratyk, Yu. Mishura, “The generalization of the quantile hedging problem for a price process model involving a finite number of Brownian and fractional Brownian motions”, Theory Stoch. Process., 14:3-4 (2008), 27–38 | MR | Zbl
[7] Jiatu Cai, M. Fukasawa, “Asymptotic replication with modified volatility under small transaction costs”, Finance Stoch., 20:2 (2016), 381–431 | DOI | MR | Zbl
[8] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman Hall/CRC Financ. Math. Ser., Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+535 pp. | DOI | MR | Zbl
[9] J. Cvitanić, I. Karatzas, “Hedging and portfolio optimization under transaction costs: a martingale approach”, Math. Finance, 6:2 (1996), 133–165 | DOI | MR | Zbl
[10] S. Darses, E. Lépinette, “Mean square error and limit theorem for the modified Leland hedging strategy with a constant transaction costs coefficient”, Inspired by finance, Springer, Cham, 2014, 159–199 | DOI | MR | Zbl
[11] R. Elie, E. Lépinette, “Approximate hedging for nonlinear transaction costs on the volume of traded assets”, Finance Stoch., 19:3 (2013), 541–581 | DOI | MR | Zbl
[12] H. Föllmer, P. Leukert, “Quantile hedging”, Finance Stoch., 3:3 (1999), 251–273 | DOI | MR | Zbl
[13] A. Friedman, Stochastic differential equations and applications, v. 1, Probab. Math. Statist., 28, Academic Press, New York–London, 1975, xiii+231 pp. | MR | Zbl
[14] M. Fukasawa, “Conservative delta hedging under transaction costs”, Recent advances in financial engineering (Kyoto, 2011), World Sci. Publ., Hackensack, NJ, 2012, 55–72 | DOI
[15] M. Fukasawa, “Efficient discretization of stochastic integrals”, Finance Stoch., 18:1 (2014), 175–208 | DOI | MR | Zbl
[16] E. R. Grannan, G. H. Swindle, “Minimizing transaction costs of option hedging strategies”, Math. Finance, 6:4 (1996), 341–364 | DOI | Zbl
[17] P. Hall, C. C. Heyde, Martingale limit theory and its application, Probab. Math. Statist., Academic Press, Inc., New York–London, 1980, xii+308 pp. | MR | Zbl
[18] Yu. Kabanov, S. Pergamenshchikov, “Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process”, Finance Stoch., 24:1 (2020), 39–69 | DOI | MR | Zbl
[19] Yu. M. Kabanov, M. M. Safarian, “On Leland's strategy of option pricing with transactions costs”, Finance Stoch., 1:3 (1997), 239–250 | DOI | Zbl
[20] Yu. Kabanov, M. Safarian, Markets with transaction costs. Mathematical theory, Springer Finance, Springer-Verlag, Berlin, 2009, xiv+294 pp. | DOI | MR | Zbl
[21] S. G. Kou, “Jump-diffusion models for asset pricing in financial engineering”, Financial engineering, Ch. 2, Handbooks in operations research and management science, 15, Elsevier, Amsterdam, 2007, 73–116 | DOI | Zbl
[22] H. E. Leland, “Option pricing and replication with transactions costs”, J. Finance, 40:5 (1985), 1283–1301 | DOI
[23] E. Lépinette, Tuan Tran, “Approximate hedging in a local volatility model with proportional transaction costs”, Appl. Math. Finance, 21:4 (2014), 313–341 | DOI | MR | Zbl
[24] E. Lépinette, Marché avec côuts de transaction: approximation de Leland et arbitrage, Thèse doctorale, Univ. Franche-Comté, Besançon, 2008
[25] E. Lépinette, “Modified Leland's strategy for a constant transaction costs rate”, Math. Finance, 22:4 (2012), 741–752 | DOI | MR | Zbl
[26] P.-L. Lions, M. Musiela, “Correlations and bounds for stochastic volatility models”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24:1 (2007), 1–16 | DOI | MR | Zbl
[27] C. Marinelli, M. Röckner, “On maximal inequalities for purely discontinuous martingales in infinite dimensions”, Séminaire de probabilités XLVI, Lecture Notes in Math., 2123, Springer, Cham, 2014, 293–315 | DOI | MR | Zbl
[28] R. C. Merton, “Option pricing when underlying stock returns are discontinuous”, J. Financ. Econ., 3:1-2 (1976), 125–144 | DOI | Zbl
[29] Huu-Thai Nguyen, Approximate hedging with transaction costs and Leland's algorithm in stochastic volatility markets, Univ. Rouen, 2014, 215 pp.
[30] Thai Huu Nguyen, S. Pergamenschchikov, Approximate hedging with proportional transaction costs in stochastic volatility models with jumps, 2019, arXiv: 1505.02627v2
[31] Thai Huu Nguyen, S. Pergamenshchikov, “Approximate hedging problem with transaction costs in stochastic volatility markets”, Math. Finance, 27:3 (2017), 832–865 | DOI | MR | Zbl
[32] Thai Huu Nguyen, “Approximate hedging with proportional transaction costs for multi-asset options”, Working paper, 2013
[33] A. A. Novikov, “O razryvnykh martingalakh”, Teoriya veroyatn. i ee primen., 20:1 (1975), 13–28 | MR | Zbl
[34] A. A. Novikov, “Khedzhirovanie optsionov s zadannoi veroyatnostyu”, Teoriya veroyatn. i ee primen., 43:1 (1998), 152–161 ; A. A. Novikov, “Hedging of options with a given probability”, Theory Probab. Appl., 43:1 (1999), 135–143 | DOI | MR | Zbl | DOI
[35] O. E. Barndorff-Nielsen, N. Shephard, “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial mathematics”, J. R. Stat. Soc. Ser. B Stat. Methodol., 63:2 (2001), 167–241 | DOI | MR | Zbl
[36] S. Pergamenshchikov, “Limit theorem for Leland's strategy”, Ann. Appl. Probab., 13:3 (2003), 1099–1118 | DOI | MR | Zbl
[37] M. Brodén, P. Tankov, “Tracking errors from discrete hedging in exponential Lévy models”, Int. J. Theor. Appl. Finance, 14:6 (2011), 803–837 | DOI | MR | Zbl
[38] P. Tankov, E. Voltchkova, “Asymptotic analysis of hedging errors in models with jumps”, Stochastic Process. Appl., 119:6 (2009), 2004–2027 | DOI | MR | Zbl