Approximate hedging with constant proportional transaction costs in financial markets with jumps
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 281-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a problem of option replication under constant proportional transaction costs in models where stochastic volatility and jumps are combined to capture the market's important features. Assuming some mild condition on the jump size distribution, we show that transaction costs can be approximately compensated by applying the Leland adjusting volatility principle and the asymptotic property of the hedging error due to discrete readjustments. In particular, the jump risk can be approximately eliminated, and the results established in continuous diffusion models are recovered. The study also confirms that, for the case of constant trading cost rate, the approximate results established by Kabanov and Safarian [Finance Stoch., 1 (1997), pp. 239–250] and by Pergamenschikov [Ann. Appl.Probab., 13 (2003), pp. 1099–1118] are still valid in jump-diffusion models with deterministic volatility.
Keywords: transaction costs, Leland strategy, jump models, stochastic volatility, approximate hedging, limit theorem, super-hedging, quantile hedging.
@article{TVP_2020_65_2_a2,
     author = {T. Nguyen and S. M. Pergamenshchikov},
     title = {Approximate hedging with constant proportional transaction costs in financial markets with jumps},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {281--311},
     year = {2020},
     volume = {65},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a2/}
}
TY  - JOUR
AU  - T. Nguyen
AU  - S. M. Pergamenshchikov
TI  - Approximate hedging with constant proportional transaction costs in financial markets with jumps
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 281
EP  - 311
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a2/
LA  - ru
ID  - TVP_2020_65_2_a2
ER  - 
%0 Journal Article
%A T. Nguyen
%A S. M. Pergamenshchikov
%T Approximate hedging with constant proportional transaction costs in financial markets with jumps
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 281-311
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a2/
%G ru
%F TVP_2020_65_2_a2
T. Nguyen; S. M. Pergamenshchikov. Approximate hedging with constant proportional transaction costs in financial markets with jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 281-311. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a2/

[1] Hyungsok Ahn, M. Dayal, E. Grannan, G. Swindle, “Option replication with transaction costs: general diffusion limits”, Ann. Appl. Probab., 8:3 (1998), 676–707 | DOI | MR | Zbl

[2] L. B. G. Andersen, V. V. Piterbarg, “Moment explosions in stochastic volatility models”, Finance Stoch., 11:1 (2007), 29–50 | DOI | MR | Zbl

[3] M. Baran, “Quantile hedging on markets with proportional transaction costs”, Appl. Math. (Warsaw), 30:2 (2010), 193–208 | DOI | MR | Zbl

[4] M. Barski, Quantile hedging for multiple assets derivatives, 2011, arXiv: 1010.5810v2

[5] K. Bichteler, J. Jacod, “Random measures and stochastic integration”, Theory and application of random fields (Bangalore, 1982), Lect. Notes Control Inf. Sci., 49, Springer, Berlin, 1983, 1–18 | DOI | MR | Zbl

[6] M. Bratyk, Yu. Mishura, “The generalization of the quantile hedging problem for a price process model involving a finite number of Brownian and fractional Brownian motions”, Theory Stoch. Process., 14:3-4 (2008), 27–38 | MR | Zbl

[7] Jiatu Cai, M. Fukasawa, “Asymptotic replication with modified volatility under small transaction costs”, Finance Stoch., 20:2 (2016), 381–431 | DOI | MR | Zbl

[8] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman Hall/CRC Financ. Math. Ser., Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+535 pp. | DOI | MR | Zbl

[9] J. Cvitanić, I. Karatzas, “Hedging and portfolio optimization under transaction costs: a martingale approach”, Math. Finance, 6:2 (1996), 133–165 | DOI | MR | Zbl

[10] S. Darses, E. Lépinette, “Mean square error and limit theorem for the modified Leland hedging strategy with a constant transaction costs coefficient”, Inspired by finance, Springer, Cham, 2014, 159–199 | DOI | MR | Zbl

[11] R. Elie, E. Lépinette, “Approximate hedging for nonlinear transaction costs on the volume of traded assets”, Finance Stoch., 19:3 (2013), 541–581 | DOI | MR | Zbl

[12] H. Föllmer, P. Leukert, “Quantile hedging”, Finance Stoch., 3:3 (1999), 251–273 | DOI | MR | Zbl

[13] A. Friedman, Stochastic differential equations and applications, v. 1, Probab. Math. Statist., 28, Academic Press, New York–London, 1975, xiii+231 pp. | MR | Zbl

[14] M. Fukasawa, “Conservative delta hedging under transaction costs”, Recent advances in financial engineering (Kyoto, 2011), World Sci. Publ., Hackensack, NJ, 2012, 55–72 | DOI

[15] M. Fukasawa, “Efficient discretization of stochastic integrals”, Finance Stoch., 18:1 (2014), 175–208 | DOI | MR | Zbl

[16] E. R. Grannan, G. H. Swindle, “Minimizing transaction costs of option hedging strategies”, Math. Finance, 6:4 (1996), 341–364 | DOI | Zbl

[17] P. Hall, C. C. Heyde, Martingale limit theory and its application, Probab. Math. Statist., Academic Press, Inc., New York–London, 1980, xii+308 pp. | MR | Zbl

[18] Yu. Kabanov, S. Pergamenshchikov, “Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process”, Finance Stoch., 24:1 (2020), 39–69 | DOI | MR | Zbl

[19] Yu. M. Kabanov, M. M. Safarian, “On Leland's strategy of option pricing with transactions costs”, Finance Stoch., 1:3 (1997), 239–250 | DOI | Zbl

[20] Yu. Kabanov, M. Safarian, Markets with transaction costs. Mathematical theory, Springer Finance, Springer-Verlag, Berlin, 2009, xiv+294 pp. | DOI | MR | Zbl

[21] S. G. Kou, “Jump-diffusion models for asset pricing in financial engineering”, Financial engineering, Ch. 2, Handbooks in operations research and management science, 15, Elsevier, Amsterdam, 2007, 73–116 | DOI | Zbl

[22] H. E. Leland, “Option pricing and replication with transactions costs”, J. Finance, 40:5 (1985), 1283–1301 | DOI

[23] E. Lépinette, Tuan Tran, “Approximate hedging in a local volatility model with proportional transaction costs”, Appl. Math. Finance, 21:4 (2014), 313–341 | DOI | MR | Zbl

[24] E. Lépinette, Marché avec côuts de transaction: approximation de Leland et arbitrage, Thèse doctorale, Univ. Franche-Comté, Besançon, 2008

[25] E. Lépinette, “Modified Leland's strategy for a constant transaction costs rate”, Math. Finance, 22:4 (2012), 741–752 | DOI | MR | Zbl

[26] P.-L. Lions, M. Musiela, “Correlations and bounds for stochastic volatility models”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24:1 (2007), 1–16 | DOI | MR | Zbl

[27] C. Marinelli, M. Röckner, “On maximal inequalities for purely discontinuous martingales in infinite dimensions”, Séminaire de probabilités XLVI, Lecture Notes in Math., 2123, Springer, Cham, 2014, 293–315 | DOI | MR | Zbl

[28] R. C. Merton, “Option pricing when underlying stock returns are discontinuous”, J. Financ. Econ., 3:1-2 (1976), 125–144 | DOI | Zbl

[29] Huu-Thai Nguyen, Approximate hedging with transaction costs and Leland's algorithm in stochastic volatility markets, Univ. Rouen, 2014, 215 pp.

[30] Thai Huu Nguyen, S. Pergamenschchikov, Approximate hedging with proportional transaction costs in stochastic volatility models with jumps, 2019, arXiv: 1505.02627v2

[31] Thai Huu Nguyen, S. Pergamenshchikov, “Approximate hedging problem with transaction costs in stochastic volatility markets”, Math. Finance, 27:3 (2017), 832–865 | DOI | MR | Zbl

[32] Thai Huu Nguyen, “Approximate hedging with proportional transaction costs for multi-asset options”, Working paper, 2013

[33] A. A. Novikov, “O razryvnykh martingalakh”, Teoriya veroyatn. i ee primen., 20:1 (1975), 13–28 | MR | Zbl

[34] A. A. Novikov, “Khedzhirovanie optsionov s zadannoi veroyatnostyu”, Teoriya veroyatn. i ee primen., 43:1 (1998), 152–161 ; A. A. Novikov, “Hedging of options with a given probability”, Theory Probab. Appl., 43:1 (1999), 135–143 | DOI | MR | Zbl | DOI

[35] O. E. Barndorff-Nielsen, N. Shephard, “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial mathematics”, J. R. Stat. Soc. Ser. B Stat. Methodol., 63:2 (2001), 167–241 | DOI | MR | Zbl

[36] S. Pergamenshchikov, “Limit theorem for Leland's strategy”, Ann. Appl. Probab., 13:3 (2003), 1099–1118 | DOI | MR | Zbl

[37] M. Brodén, P. Tankov, “Tracking errors from discrete hedging in exponential Lévy models”, Int. J. Theor. Appl. Finance, 14:6 (2011), 803–837 | DOI | MR | Zbl

[38] P. Tankov, E. Voltchkova, “Asymptotic analysis of hedging errors in models with jumps”, Stochastic Process. Appl., 119:6 (2009), 2004–2027 | DOI | MR | Zbl