Large financial markets, discounting, and no asymptotic arbitrage
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 237-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a large financial market (which is a sequence of usual, “small” financial markets), we introduce and study a concept of no asymptotic arbitrage (of the first kind), which is invariant under discounting. We give two dual characterizations of this property in terms of (1) martingale-like properties for each small market plus (2) a contiguity property, along the sequence of small markets, of suitably chosen “generalized martingale measures.” Our results extend the work of Rokhlin, Klein, and Schachermayer and Kabanov and Kramkov to a discounting-invariant framework. We also show how a market on $[0,\infty)$ can be viewed as a large financial market and how no asymptotic arbitrage, both classic and in our new sense, then relates to no-arbitrage properties directly on $[0,\infty)$.
Keywords: large financial markets, asymptotic arbitrage, discounting, no asymptotic arbitrage (NAA), no unbounded profit with bounded risk (NUPBR), asymptotic strong share maximality, dynamic share viability, asymptotic dynamic share viability, tradable discounter.
@article{TVP_2020_65_2_a1,
     author = {D. A. Balint and M. Schweizer},
     title = {Large financial markets, discounting, and no asymptotic arbitrage},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {237--280},
     year = {2020},
     volume = {65},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a1/}
}
TY  - JOUR
AU  - D. A. Balint
AU  - M. Schweizer
TI  - Large financial markets, discounting, and no asymptotic arbitrage
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 237
EP  - 280
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a1/
LA  - ru
ID  - TVP_2020_65_2_a1
ER  - 
%0 Journal Article
%A D. A. Balint
%A M. Schweizer
%T Large financial markets, discounting, and no asymptotic arbitrage
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 237-280
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a1/
%G ru
%F TVP_2020_65_2_a1
D. A. Balint; M. Schweizer. Large financial markets, discounting, and no asymptotic arbitrage. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 237-280. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a1/

[1] J.-P. Ansel, C. Stricker, “Couverture des actifs contingents et prix maximum”, Ann. Inst. H. Poincaré Probab. Statist., 30:2 (1994), 303–315 | MR | Zbl

[2] A. Balbás, A. Downarowicz, “Infinitely many securities and the fundamental theorem of asset pricing”, Mediterr. J. Math., 4:3 (2007), 321–341 | DOI | MR | Zbl

[3] D. Á. Bálint, M. Schweizer, Making no-arbitrage discounting-invariant: a new FTAP beyond NFLVR and NUPBR, Research paper No 18-23, Swiss Finance Institute Research Paper Series, Swiss Finance Institute, Zürich, 2018, 40 pp. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=3141770 | DOI

[4] M. Baran, “Asymptotic pricing in large financial markets”, Math. Methods Oper. Res., 66:1 (2007), 1–20 | DOI | MR | Zbl

[5] G. Chamberlain, M. Rothschild, “Arbitrage, factor structure, and mean-variance analysis on large asset markets”, Econometrica, 51:5 (1983), 1281–1304 | DOI | MR | Zbl

[6] H. N. Chau, A. Cosso, C. Fontana, O. Mostovyi, “Optimal investment with intermediate consumption under no unbounded profit with bounded risk”, J. Appl. Probab., 54:3 (2017), 710–719 | DOI | MR | Zbl

[7] H. N. Chau, W. J. Runggaldier, P. Tankov, “Arbitrage and utility maximization in market models with an insider”, Math. Financ. Econ., 12:4 (2018), 589–614 | DOI | MR | Zbl

[8] T. Choulli, J. Deng, J. Ma, “How non-arbitrage, viability and numéraire portfolio are related”, Finance Stoch., 19:4 (2015), 719–741 | DOI | MR | Zbl

[9] C. Cuchiero, I. Klein, J. Teichmann, “A new perspective on the fundamental theorem of asset pricing for large financial markets”, Theory Probab. Appl., 60:4 (2016), 561–579 | DOI | DOI | MR | Zbl

[10] M. De Donno, P. Guasoni, M. Pratelli, “Super-replication and utility maximization in large financial markets”, Stochastic Process. Appl., 115:12 (2005), 2006–2022 | DOI | MR | Zbl

[11] F. Delbaen, W. Schachermayer, “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[12] F. Delbaen, W. Schachermayer, “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–250 | DOI | MR | Zbl

[13] C. Dellacherie, P.-A. Meyer, Probabilities and potential. B. Theory of martingales, North-Holland Math. Stud., 72, North-Holland Publishing Co., Amsterdam, 1982, xvii+463 pp. | MR | Zbl

[14] N. G. Dokuchaev, A. V. Savkin, “Universal strategies for diffusion markets and possibility of asymptotic arbitrage”, Insurance Math. Econom., 34:3 (2004), 409–419 | DOI | MR | Zbl

[15] M. Herdegen, “No-arbitrage in a numéraire-independent modeling framework”, Math. Finance, 27:2 (2017), 568–603 | DOI | MR

[16] G. Huberman, “A simple approach to arbitrage pricing theory”, J. Econom. Theory, 28:1 (1982), 183–191 | DOI | Zbl

[17] Yu. M. Kabanov, “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and control of stochastic processes. The Liptser festschrift (Moscow, 1995/1996), World Sci. Publ., River Edge, NJ, 1997, 191–203 | MR | Zbl

[18] Yu. Kabanov, C. Kardaras, Shiqi Song, “No arbitrage of the first kind and local martingale numéraires”, Finance Stoch., 20:4 (2016), 1097–1108 | DOI | MR | Zbl

[19] Yu. M. Kabanov, D. O. Kramkov, “Large financial markets: asymptotic arbitrage and contiguity”, Theory Probab. Appl., 39:1 (1995), 182–187 | DOI | MR | Zbl

[20] Yu. M. Kabanov, D. O. Kramkov, “Asymptotic arbitrage in large financial markets”, Finance Stoch., 2:2 (1998), 143–172 | DOI | MR | Zbl

[21] I. Karatzas, C. Kardaras, “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl

[22] C. Kardaras, “Generalized supermartingale deflators under limited information”, Math. Finance, 23:1 (2013), 186–197 | DOI | MR | Zbl

[23] I. Klein, “A fundamental theorem of asset pricing for large financial markets”, Math. Finance, 10:4 (2000), 443–458 | DOI | MR | Zbl

[24] I. Klein, “Free lunch for large financial markets with continuous price processes”, Ann. Appl. Probab., 13:4 (2003), 1494–1503 | DOI | MR | Zbl

[25] I. Klein, E. Lépinette, L. Perez-Ostafe, “Asymptotic arbitrage with small transaction costs”, Finance Stoch., 18:4 (2014), 917–939 | DOI | MR | Zbl

[26] I. Klein, W. Schachermayer, “Asymptotic arbitrage in non-complete large financial markets”, Teoriya veroyatn. i ee primen., 41:4 (1996), 927–934 ; Theory Probab. Appl., 41:4 (1997), 780–788 | DOI | MR | Zbl | DOI

[27] I. Klein, W. Schachermayer, “A quantitative and a dual version of the Halmos–Savage theorem with applications to mathematical finance”, Ann. Probab., 24:2 (1996), 867–881 | DOI | MR | Zbl

[28] M. Rásonyi, “On optimal strategies for utility maximizers in the arbitrage pricing model”, Int. J. Theor. Appl. Finance, 19:7 (2016), 1650047, 12 pp. | DOI | MR | Zbl

[29] M. Rásonyi, “Maximizing expected utility in the arbitrage pricing model”, J. Math. Anal. Appl., 454:1 (2017), 127–143 | DOI | MR | Zbl

[30] A. Roch, “Asymptotic asset pricing and bubbles”, Math. Financ. Econ., 12:2 (2018), 275–304 | DOI | MR | Zbl

[31] D. B. Rokhlin, “Asymptotic arbitrage and numéraire portfolios in large financial markets”, Finance Stoch., 12:2 (2008), 173–194 | DOI | MR | Zbl

[32] S. A. Ross, “The arbitrage theory of capital asset pricing”, J. Econom. Theory, 13:3 (1976), 341–360 | DOI | MR

[33] W. Strong, “Fundamental theorems of asset pricing for piecewise semimartingales of stochastic dimension”, Finance Stoch., 18:3 (2014), 487–514 | DOI | MR | Zbl

[34] K. Takaoka, M. Schweizer, “A note on the condition of no unbounded profit with bounded risk”, Finance Stoch., 18:2 (2014), 393–405 | DOI | MR | Zbl