Large financial markets, discounting, and no asymptotic arbitrage
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 237-280
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a large financial market (which is a sequence of usual, “small” financial
markets), we introduce and study a concept of no asymptotic arbitrage (of the
first kind), which is invariant under discounting. We give two dual
characterizations of this property in terms of (1) martingale-like properties
for each small market plus (2) a contiguity property, along the sequence of
small markets, of suitably chosen “generalized martingale measures.” Our
results extend the work of Rokhlin, Klein, and Schachermayer and Kabanov and
Kramkov to a discounting-invariant framework. We also show how a market on
$[0,\infty)$ can be viewed as a large financial market and how no asymptotic
arbitrage, both classic and in our new sense, then relates to no-arbitrage
properties directly on $[0,\infty)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
large financial markets, asymptotic arbitrage, discounting, no asymptotic arbitrage (NAA), no unbounded profit with bounded risk (NUPBR), asymptotic strong share maximality, dynamic share viability, asymptotic dynamic share viability, tradable discounter.
                    
                  
                
                
                @article{TVP_2020_65_2_a1,
     author = {D. A. Balint and M. Schweizer},
     title = {Large financial markets, discounting, and no asymptotic arbitrage},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {237--280},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a1/}
}
                      
                      
                    TY - JOUR AU - D. A. Balint AU - M. Schweizer TI - Large financial markets, discounting, and no asymptotic arbitrage JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 237 EP - 280 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a1/ LA - ru ID - TVP_2020_65_2_a1 ER -
D. A. Balint; M. Schweizer. Large financial markets, discounting, and no asymptotic arbitrage. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 237-280. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a1/
