Keywords: complete lattice, lower cone distribution function, random set.
@article{TVP_2020_65_2_a0,
author = {C. Ararat and A. Hamel},
title = {Lower cone distribution functions and set-valued quantiles form {Galois} connections},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {221--236},
year = {2020},
volume = {65},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a0/}
}
TY - JOUR AU - C. Ararat AU - A. Hamel TI - Lower cone distribution functions and set-valued quantiles form Galois connections JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 221 EP - 236 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a0/ LA - ru ID - TVP_2020_65_2_a0 ER -
C. Ararat; A. Hamel. Lower cone distribution functions and set-valued quantiles form Galois connections. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 2, pp. 221-236. http://geodesic.mathdoc.fr/item/TVP_2020_65_2_a0/
[1] E. Ç{\i}nlar, Probability and stochastics, Grad. Texts in Math., 261, Springer, New York, 2011, xiv+557 pp. | DOI | MR | Zbl
[2] G. Crespi, A. H. Hamel, M. Rocca, C. Schrage, Set relations and approximate solutions in set optimization, 2018, arXiv: 1812.03300
[3] B. A. Davey, H. A. Priestley, Introduction to lattices and order, 2nd ed., Cambridge Univ. Press, New York, 2002, xii+298 pp. | DOI | MR | Zbl
[4] A. Doering, B. Dewitt, Self-adjoint operators as functions II: quantum probability, 2013, arXiv: 1210.5747v2
[5] S. Drapeau, A. H. Hamel, M. Kupper, “Complete duality for quasiconvex and convex set-valued functions”, Set-Valued Var. Anal., 24:2 (2016), 253–275 | DOI | MR | Zbl
[6] O. P. Faugeras, L. Rüschendorf, “Markov morphisms: a combined copula and mass transportation approach to multivariate quantiles”, Math. Appl. (Warsaw), 45:1 (2017), 21–63 | DOI | MR
[7] H. Föllmer, A. Schied, Stochastic finance. An introduction in discrete time, 3rd rev. ed., Walter de Gruyter Co., Berlin, 2011, xii+544 pp. | DOI | MR | Zbl
[8] A. H. Hamel, F. Heyde, A. Löhne, B. Rudloff, C. Schrage, “Set optimization — a rather short introduction”, Set optimization and applications — the state of the art. From set relations to set-valued risk measures, Springer-Verlag, Berlin, 2015, 65–141 | DOI | MR | Zbl
[9] A. H. Hamel, D. Kostner, “Cone distribution functions and quantiles for multivariate random variables”, J. Multivariate Anal., 167 (2018), 97–113 | DOI | MR | Zbl
[10] D. Kostner, “Multi-criteria decision making via multivariate quantiles”, Math. Methods Oper. Res., 91:1 (2020), 73–88 | DOI | MR | Zbl
[11] I. Molchanov, Theory of random sets, Probab. Theory Stoch. Model., 87, 2nd ed., Springer-Verlag, London, 2017, xvi+678 pp. | DOI | MR | Zbl
[12] P. J. Rousseeuw, I. Ruts, “The depth function of a population distribution”, Metrika, 49:3 (1999), 213–244 | DOI | MR | Zbl
[13] R. Serfling, “Quantile functions for multivariate analysis: approaches and applications”, Statist. Neerlandica, 56:2 (2002), 214–232 | DOI | MR | Zbl
[14] R. Serfling, “Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardisation”, J. Nonparametr. Stat., 22:7 (2010), 915–936 | DOI | MR | Zbl
[15] Yijun Zuo, R. Serfling, “General notions of statistical depth function”, Ann. Statist., 28:2 (2000), 461–482 | DOI | MR | Zbl