Abstracts of talks given at the 4th International Conference on Stochastic Methods
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 151-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents abstracts of the talks presented at The Fourth International Conference on Stochastic Methods (ICSM-4), which was held June 2–9, 2019 at Divnomorskoe (near the town of Gelendzhik) at the Raduga sports and fitness center of the Don State Technical University. Participants included many leading scientists from Russia, France, Germany, Portugal, and Bulgaria.
@misc{TVP_2020_65_1_a9,
     title = {Abstracts of talks given at the 4th {International} {Conference} on {Stochastic} {Methods}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {151--210},
     year = {2020},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a9/}
}
TY  - JOUR
TI  - Abstracts of talks given at the 4th International Conference on Stochastic Methods
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 151
EP  - 210
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a9/
LA  - ru
ID  - TVP_2020_65_1_a9
ER  - 
%0 Journal Article
%T Abstracts of talks given at the 4th International Conference on Stochastic Methods
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 151-210
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a9/
%G ru
%F TVP_2020_65_1_a9
Abstracts of talks given at the 4th International Conference on Stochastic Methods. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 151-210. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a9/

[1] V. I. Afanasyev, “On a decomposable branching process with two types of particles”, Proc. Steklov Inst. Math., 294 (2016), 1–12 | DOI | DOI | MR | Zbl

[2] V. I. Afanasyev, “A functional limit theorem for decomposable branching processes with two particle types”, Math. Notes, 103:3 (2018), 337–347 | DOI | DOI | MR | Zbl

[1] T. Fischer, C. Krauss, “Deep learning with long short-term memory networks for financial market predictions”, European J. Oper. Res., 270:2 (2018), 654–669 | DOI | MR | Zbl

[2] T. G. Dietterich, “Approximate statistical tests for comparing supervised classification learning algorithms”, Neural Comput., 10:7 (1998), 1895–1923 | DOI

[1] Ya. Belopolskaya, “Stochastic models for nonlinear cross-diffusion systems”, Statistics and simulation, Springer Proc. Math. Stat., 231, Springer, Cham, 2018, 145–159 | DOI | MR | Zbl

[2] Ya. I. Belopolskaya, “Stochastic interpretation of quasilinear parabolic systems with cross diffusion”, Theory Probab. Appl., 61:2 (2017), 208–234 | DOI | DOI | MR | Zbl

[3] Ya. I. Belopolskaya, “Probabilistic counterparts of nonlinear parabolic partial differential equation systems”, Modern stochastics and applications, Springer Optim. Appl., 90, Springer, Cham, 2014, 71–94 | DOI | MR | Zbl

[4] Ya. I. Belopolskaya, A. O. Stepanova, “Stokhasticheskaya interpretatsiya sistemy MGD–Byurgers”, Veroyatnost i statistika. 26, Zap. nauch. sem. POMI, 466, POMI, SPb., 2017, 7–29 | MR

[1] A. V. Nikitina, L. Kravchenko, I. Semenov, Yu. Belova, A. Semenyakina, “Modeling of production and destruction processes in coastal systems on a supercomputer”, MATEC Web Conf., 226 (2018), 04025, 7 pp. | DOI

[1] L. A. Bordag, I. P. Yamshchikov, “Optimization problem for a portfolio with an illiquid asset: Lie group analysis”, J. Math. Anal. Appl., 453:2 (2017), 668–699 | DOI | MR | Zbl

[2] L. A. Bordag, I. P. Yamshchikov, D. Zhelezov, “Portfolio optimization in the case of an asset with a given liquidation time distribution”, Int. J. Eng. Math. Model., 2:2 (2015), 31–50

[1] V. A. Gushchin, A. I. Sukhinov, A. V. Nikitina, A. E. Chistyakov, A. A. Semenyakina, “A model of transport and transformation of biogenic elements in the coastal system and its numerical implementation”, Comput. Math. Math. Phys., 58:8 (2018), 1316–1333 | DOI | DOI | MR | Zbl

[1] I. Pavlov, “New family of one-step processes admitting special interpolating martingale measures”, Global and Stochastic Analysis, 5:2 (2018), 111–119

[2] A. G. Danekyants, N. V. Neumerzhitskaia, “Generalization of a result on the existence of weakly interpolating martingale measures”, in “Abstracts of talks given at the 3rd International conference on stochastic methods”, Theory Probab. Appl., 64:1 (2019), 134–135 | DOI | DOI

[1] A. Bulinski, D. Dimitrov, Statistical estimation of the Kullback–Leibler divergence, arXiv: 1907.00196

[2] A. Bulinski, D. Dimitrov, “Statistical estimation of the Shannon entropy”, Acta Math. Sin. (Engl. Ser.), 35:1 (2019), 17–46 | DOI | MR | Zbl

[3] P. Alonso Ruiz, E. Spodarev, “Entropy-based inhomogeneity detection in fiber materials”, Methodol. Comput. Appl. Probab, 20:4 (2018), 1223–1239 | DOI | MR | Zbl

[1] G. Kersting, V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., ISTE, London; John Wiley Sons, Inc., Hoboken, NJ, 2017, xiv+273 pp. | DOI | Zbl

[2] R. T. Durrett, D. L. Iglehart, D. R. Miller, “Weak convergence to Brownian meander and Brownian excursion”, Ann. Probab., 5:1 (1977), 117–129 | DOI | MR | Zbl

[3] V. I. Afanasyev, “A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment”, Discrete Math. Appl., 8:4 (1998), 421–438 | DOI | DOI | MR | Zbl

[4] V. Vatutin, E. Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602 | DOI | MR | Zbl

[1] M. L. Esquível, P. P. Mota, J. P. Pina, On a stochastic model for a cooperative banking scheme for microcredit, 2019, preprint

[2] Hua Dong, Zaiming Liu, “The ruin problem in a renewal risk model with two-sided jumps”, Math. Comput. Modelling, 57:3-4 (2013), 800–811 | DOI | MR | Zbl

[3] J. J. Rebello, K. K. Thampi, “Some ruin theory components of two sided jump problems under renewal risk process”, Int. Math. Forum, 12:7 (2017), 311–325 | DOI

[1] A. A. Lyapunov, S. V. Yablonskii, “Teoreticheskie problemy kibernetiki”, Problemy kibernetiki: sb. st., 9, Fizmatgiz, M., 1963, 5–22 | Zbl

[2] A. V. Zorin, M. A. Fedotkin, “Optimization of control of doubly stochastic nonordinary flows in time-sharing systems”, Autom. Remote Control, 66:7 (2005), 1115–1124 | DOI | MR | Zbl

[3] E. V. Kudryavtsev, M. A. Fedotkin, “Analysis of a discrete model of an adaptive control system for conflicting nonhomogeneous flows”, Moscow Univ. Comput. Math. Cybernet., 43:1 (2019), 17–24 | DOI | MR | Zbl

[4] M. Rachinskaya, M. Fedotkin, “Stationarity conditions for the control systems that provide service to the conflicting batch Poisson flows”, Analytical and computational methods in probability theory, ACMPT 2017, Lecture Notes in Comput. Sci., 10684, Springer, Cham, 2017, 43–53 | DOI | Zbl

[5] E. V. Proidakova, M. A. Fedotkin, “Control of output flows in the system with cyclic servicing and readjustments”, Autom. Remote Control, 69:6 (2008), 993–1002 | DOI | MR | Zbl

[1] V. A. Gushchin, A. I. Sukhinov, A. V. Nikitina, A. E. Chistyakov, A. A. Semenyakina, “A model of transport and transformation of biogenic elements in the coastal system and its numerical implementation”, Comput. Math. Math. Phys., 58:8 (2018), 1316–1333 | DOI | DOI | MR | Zbl

[1] Yu. E. Gliklikh, Global and stochastic analysis with applications to mathematical physics, Theoret. Math. Phys., Springer-Verlag London, Ltd., London, 2011, xxiv+436 pp. | DOI | MR | Zbl

[2] S. V. Azarina, Yu. E. Gliklikh, “On the solvability of nonautonomous stochastic differential equations with current velocities”, Math. Notes, 100:1 (2016), 3–10 | DOI | DOI | MR | Zbl

[1] L. C. G. Rogers, “The joint law of the maximum and terminal value of a martingale”, Probab. Theory Related Fields, 95:4 (1993), 451–466 | DOI | MR | Zbl

[1] A. Frolova, Yu. Kabanov, S. Pergamenshchikov, “In the insurance business risky investments are dangerous”, Finance Stoch., 6:2 (2002), 227–235 | DOI | MR | Zbl

[2] Yu. Kabanov, S. Pergamenshchikov, “In the insurance business risky investments are dangerous: the case of negative risk sums”, Finance Stoch., 20:2 (2016), 355–379 | DOI | MR | Zbl

[3] Yu. Kabanov, S. Pergamenshchikov, Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process, arXiv: 1604.06370

[1] E. V. Karachanskaya, “The generalized Itô–Venttsel' formula in the case of a noncentered Poisson measure, a stochastic first integral, and a first integral”, Siberian Adv. Math., 25:3 (2015), 191–205 | DOI | MR | Zbl

[2] V. A. Dubko, “Problema invariantnosti i algoritm poctroeniya mnozhestva avtomorfnykh preobrazovanii dlya zadannoi funktsii”, Vidkriti evolyutsionuyuchi sistemi (Kiev, 2003), v. 2, VNZ VMURoL, Kiev, 2004, 66–68

[1] V. M. Kocheganov, A. V. Zorin, “Dostatochnoe uslovie suschestvovaniya statsionarnogo rezhima ocheredei pervichnykh trebovanii v tandeme sistem massovogo obsluzhivaniya”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2018, no. 2, 49–74 | DOI

[2] A. V. Zorin, V. M. Kocheganov, “Statisticheskii analiz i optimizatsiya tandema sistem massovogo obsluzhivaniya v klasse tsiklicheskikh algoritmov s prodleniem”, UBS, 78 (2019), 122–148 | DOI

[1] M. A. Rachinskaya, M. A. Fedotkin, “Issledovanie uslovii suschestvovaniya statsionarnogo rezhima v sisteme konfliktnogo obsluzhivaniya neodnorodnykh trebovanii”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2018, no. 51, 33–47 | DOI

[1] A. Bulinski, A. Kozhevin, “Statistical estimation of conditional Shannon entropy”, ESAIM Probab. Stat., 23 (2019), 350–386 | DOI | MR | Zbl

[2] A. Bulinski, A. Kozhevin, “Statistical estimation of mutual information for mixed model”, Methodology and Computing in Appl. Probab. (to appear)

[1] I. V. Pavlov, S. I. Uglich, “Optimizatsiya slozhnykh sistem kvazilineinogo tipa s neskolkimi nezavisimymi prioritetami”, Vestnik RGUPS, 2017, no. 3(67), 140–145

[1] E. V. Kudryavtsev, M. A. Fedotkin, “Analysis of a discrete model of an adaptive control system for conflicting nonhomogeneous flows”, Moscow Univ. Comput. Math. Cybernet., 43:1 (2019), 17–24 | DOI | MR | Zbl

[2] E. V. Kudryavtsev, M. A. Fedotkin, “Issledovanie matematicheskoi modeli adaptivnogo upravleniya konfliktnymi potokami neodnorodnykh trebovanii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2019, no. 1, 23–37 | DOI

[1] S. Boyarchenko, S. Levendorski\u{i}, “Efficient Laplace inversion, Wiener–Hopf factorization and pricing lookbacks”, Int. J. Theor. Appl. Finance, 16:3 (2013), 1350011, 40 pp. | DOI | MR | Zbl

[2] Min Dai, Yue Kuen Kwock, “American options with lookback payoff”, SIAM J. Appl. Math., 66:1 (2005), 206–227 | DOI | MR | Zbl

[3] O. E. Kudryavtsev, “Approximate Wiener–Hopf factorization and Monte Carlo methods for Lévy processes”, Theory Probab. Appl., 64:2 (2019), 186–208 | DOI | DOI | MR | Zbl

[4] O. Kudryavtsev, S. Levendorskii, Efficient pricing options with barrier and lookback features under Lévy processes, Working paper, 2011, 29 pp. | DOI

[1] D. F. Kuznetsov, Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya, S programmami v srede MATLAB, Elektronnyi zhurnal “Differentsialnye uravneniya i protsessy upravleniya”, no. 4, Izd. 6-e, pererab. i dop., SPbPU, SPb., 2018, 1073 pp. http://diffjournal.spbu.ru/RU/numbers/2018.4/article.2.1.html | MR | Zbl

[1] S. A. Vavilov, K. S. Kuznetsov, “Weighted average price management of manufacturer sales on commodity exchanges”, Int. J. Financ. Eng., 05:03 (2018), 1850029, 17 pp. | DOI | MR

[2] S. A. Vavilov, K. S. Kuznetsov, “A stochastic control model for the average price of manufacturer sales on commodity exchanges”, Autom. Remote Control, 80:6 (2019), 1098–1108 | DOI | DOI | MR

[1] E. Lépinette, I. Molchanov, “Conditional cores and conditional convex hulls of random sets”, J. Math. Anal. Appl., 478:2 (2019), 368–392 | DOI | MR | Zbl

[2] E. Lepinette, I. Molchanov, Risk arbitrage and hedging to acceptability, arXiv: 1605.07884

[3] E. Lepinette, Tuan Tran, “General financial market model defined by a liquidation value process”, Stochastics, 88:3 (2016), 437–459 | DOI | MR | Zbl

[1] A. A. Lykov, V. A. Malyshev, M. V. Melikian, “Phase diagram for one-way traffic flow with local control”, Phys. A, 486 (2017), 849–866 | DOI | MR

[2] A. A. Lykov, V. A. Malyshev, “From the $N$-body problem to Euler equations”, Russ. J. Math. Phys., 24:1 (2017), 79–95 | DOI | MR | Zbl

[1] A. V. Makarova, “Stochastic inclusions with forward mean derivatives having decomposable right-hand sides”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 12:2 (2019), 143–149 | DOI | Zbl

[1] E. N. Krivyakova, G. V. Martynov, Yu. N. Tyurin, “On the distribution of the $\omega^2$ statistics in the multidimensional case”, Theory Probab. Appl., 22:2 (1978), 406–410 | DOI | MR | Zbl

[2] G. V. Martynov, Kriterii omega-kvadrat, Nauka, M., 1978, 79 pp. | MR | Zbl

[3] G. Martynov, “A Cramér–von Mises test for Gaussian processes”, Mathematical statistics and limit theorems, Springer, Cham, 2015, 209–229 | DOI | MR | Zbl

[1] J. Stöber, H. Joe, C. Czado, “Simplified pair copula constructions–limitations and extensions”, J. Multivariate Anal., 119 (2013), 101–118 | DOI | MR | Zbl

[2] S. Ya. Shatskikh, L. E. Melkumova, “Reducing the sample size when estimating conditional quantiles”, CEUR Workshop Proceedings, 1638 (2016), 769–781 http://ceur-ws.org/Vol-1638/

[1] E. L. Romm, V. V. Skitovich, “On certain generalization of problem of Erlang”, Autom. Remote Control, 32:6 (1971), 1000–1003 | Zbl

[2] E. Gelenbe, “Product-form queuing networks with negative and positive customers”, J. Appl. Probab., 28:3 (1991), 656–663 | DOI | MR | Zbl

[3] V. Naumov, K. Samouylov, “Analysis of multi-resource loss system with state-dependent arrival and service rates”, Probab. Engrg. Inform. Sci., 31:4 (2017), 413–419 | DOI | MR | Zbl

[1] I. V. Pavlov, V. V. Shamraeva, I. V. Tsvetkova, “On the existence of martingale measures satisfying the weakened condition of noncoincidence of barycenters in the case of countable probability space”, Theory Probab. Appl., 61:1 (2017), 167–175 | DOI | DOI | MR | Zbl

[2] I. V. Pavlov, “New family of one-step processes admitting special interpolating martingale measures”, Global and Stochastic Analysis, 5:2 (2018), 111–119

[1] A. Yu. Perevaryukha, in “Abstracts of talks given at the 2nd International conference on stochastic methods”, Theory Probab. Appl., 62:4 (2018) | DOI | DOI

[1] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a limit theorem related to probabilistic representation of solution to the Cauchy problem for the Schrödinger equation”, J. Math. Sci. (N. Y.), 229:6 (2018), 702–713 | DOI | MR | Zbl

[1] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl

[2] V. I. Rotar', “An extension of the Lindeberg–Feller theorem”, Math. Notes, 18:1 (1975), 660–663 | DOI | MR | Zbl

[3] E. L. Presman, Sh. K. Formanov, “On Lindeberg–Feller limit theorem”, Dokl. Math., 99:2 (2019), 204–207 | DOI | DOI | Zbl

[1] A. A. Balkema, L. de Haan, “Residual life time at great age”, Ann. Probab., 2:5 (1974), 792–804 | DOI | MR | Zbl

[2] J. Pickands, III, “Statistical inference using extreme order statistics”, Ann. Statist., 3 (1975), 119–131 | DOI | MR | Zbl

[3] L. de Haan, A. Ferreira, Extreme value theory. An introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006, xviii+417 pp. | DOI | MR | Zbl

[4] I. V. Rodionov, “On discrimination between classes of distribution tails”, Probl. Inf. Transm., 54:2 (2018), 124–138 | DOI | MR | Zbl

[5] I. V. Rodionov, “A discrimination test for tails of Weibull-type distributions”, Theory Probab. Appl., 63:2 (2018), 327–335 | DOI | DOI | MR | Zbl

[6] I. Rodionov, “On parametric estimation of distribution tails”, 4th ISNPS (Salerno, 2018) (to appear)

[1] O. Kudryavtsev, S. Grechko, “Statistical methods for calibrating models of cryptocurrencies prices”, Accounting and Statistics, 4:52 (2018), 67–76

[2] J. De Spiegeleer, D. B. Madan, S. Reyners, W. Schoutens, “Machine learning for quantitative finance: fast derivative pricing, hedging and fitting”, Quant. Finance, 18:10 (2018), 1635–1643 ; https://doi.org/10.2139/ssrn.3191050 | DOI | MR | Zbl

[1] A. Beck, A. Nedić, A. Ozdaglar, “An $O(1/k)$ gradient method for network resource allocation problems”, IEEE Trans. Control Netw. Syst., 1:1 (2014), 64–73 | DOI | MR | Zbl

[2] F. P. Kelly, A. K. Maulloo, D. K. H. Tan, “Rate control for communication networks: shadow prices, proportional fairness and stability”, J. Oper. Res. Soc., 49:3 (1998), 237–252 | DOI | Zbl

[1] M. V. Platonova, K. S. Ryadovkin, “Branching random walks on $\mathbf{Z}^d$ with periodic branching sources”, Theory Probab. Appl., 64:2 (2019), 229–248 | DOI | DOI | MR | Zbl

[1] B. A. Sevast'yanov, “An ergodic theorem for Markov processes and its application to telephone systems with refusals”, Theory Probab. Appl., 2:1 (1957), 104–112 | DOI | MR | Zbl

[2] I. N. Kovalenko, Issledovaniya po analizu nadezhnosti slozhnykh sistem, Naukova Dumka, Kiev, 1975, 210 pp. | MR

[3] F. Baskett, K. M. Chandy, R. R. Muntz, F. D. Palacios, “Open, closed and mixed networks of queues with different classes of customers”, J. Assoc. Comput. Mach., 22:2 (1975), 248–260 | DOI | MR | Zbl

[4] B. V. Gnedenko, “O dublirovanii s vosstanovleniem”, Izv. AN SSSR. Ser. Tekhn. kibernet., 1964, no. 5, 111–118 | MR | Zbl

[5] A. D. Solovev, “Rezervirovanie s bystrym vosstanovleniem”, Izv. AN SSSR. Ser. Tekhn. kibernet., 1970, no. 1, 56–71 | MR | Zbl

[6] V. V. Rykov, D. V. Kozyrev, in “Abstracts of talks given at the 3rd International conference on stochastic methods”, Theory Probab. Appl., 64:1 | DOI | DOI

[7] M. Yu. Kitaev, V. V. Rykov, Controlled queueing systems, CRC Press, Boca Raton, FL, 1995, x+287 pp. | MR | Zbl

[1] A. Rytova, E. Yarovaya, “Survival analysis of particle populations in branching random walks”, Comm. Statist. Simulation Comput., Publ. online: 2019 | DOI

[2] E. Ermakova, P. Makhmutova, E. Yarovaya, “Branching random walks and their applications for epidemic modeling”, Stoch. Models, 35:3 (2019), 300–317 | DOI | MR | Zbl

[3] I. I. Khristolyubov, E. B. Yarovaya, “A limit theorem for supercritical random branching walks with branching sources of varying intensity”, Theory Probab. Appl., 64:3 (2019), 365–384 | DOI | DOI | MR | Zbl

[1] E. M. Galperin, “O protsedure opredeleniya nadezhnosti funktsionirovaniya ob'ektov sistem vodosnabzheniya i vodootvedeniya”, Vestnik SGASU. Gradostroitelstvo i arkhitektura, 2014, no. 1(14), 52–67

[1] F. E. Grubbs, “Sample criteria for testing outlying observations”, Ann. Math. Statist., 21:1 (1950), 27–58 | DOI | MR | Zbl

[2] L. K. Shiryaeva, “On distrubution of Grubbs' statistics in case of normal sample with outlier”, Russian Math. (Iz. VUZ), 61:4 (2017), 72–88 | DOI | MR | Zbl

[3] R. B. Nelsen, An introduction to copulas, Springer Ser. Statist., 2nd ed., Springer, New York, 2006, xiv+269 pp. | MR | Zbl

[1] H. J. Kushner, Stochastic stability and control, Math. Sci. Eng., 33, Academic Press, New York–London, 1967, xiv+161 pp. | MR | Zbl

[2] R. Z. Has'minskiĭ, Stochastic stability of differential equations, Monographs Textbooks Mech. Solids Fluids: Mech. Anal., 7, Sijthoff Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, xvi+344 pp. | MR | MR | Zbl | Zbl

[1] J. Pike, H. Ren, “Stein's method and the Laplace distribution”, ALEA Lat. Am. J. Probab. Math. Stat., 11:1 (2014), 571–587 | MR | Zbl

[2] R. E. Gaunt, “Wasserstein and Kolmogorov error bounds for variance-gamma approximation via Stein's method I”, J. Theoret. Probab., Publ. online: 2018, 1–41 | DOI

[1] G. A. Brosamler, “A probabilistic solution of the Neumann problem”, Math. Scand., 38:1 (1976), 137–147 | DOI | MR | Zbl

[2] K. Sato, H. Tanaka, “Local times on the boundary for multi-dimensional reflecting diffusion”, Proc. Japan Acad., 38:10 (1962), 699–702 | DOI | MR | Zbl

[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “A construction of reflecting Lévy processes”, Dokl. Math., 99:1 (2019), 71–74 | DOI | DOI | Zbl

[1] E. L. Romm, V. V. Skitovich, “On certain generalization of problem of Erlang”, Autom. Remote Control, 32:6 (1971), 1000–1003 | Zbl

[2] V. A. Naumov, K. E. Samuilov, A. K. Samuilov, “On the total amount of resources occupied by serviced customers”, Autom. Remote Control, 77:8 (2016), 1419–1427 | DOI | MR | Zbl

[3] E. S. Sopin, K. A. Ageev, E. V. Markova, O. G. Vikhrova, Yu. V. Gaidamaka, “Performance analysis of M2M traffic in LTE network using queuing systems with random resource requirements”, Automat. Control Comput. Sci., 52:5 (2018), 345–353 | DOI

[1] E. V. Seregina, Ispolzovanie proektsionnogo metoda dlya matematicheskogo modelirovaniya stokhasticheskogo raspredeleniya neosnovnykh nositelei zaryada v poluprovodnikovykh materialakh, Avtoref. disc. ... kand. fiz.-matem. nauk (05.13.18), IPM im. M. V. Keldysha RAN, M., 2014, 16 pp.

[1] T. B. Benjamin, J. L. Bona, J. J. Mahony, “Model equations for long waves in nonlinear dispersive systems”, Philos. Trans. Roy. Soc. London Ser. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl

[2] M. Chen, O. Goubet, Y. Mammeri, “Generalized regularized long wave equation with white noise dispersion”, Stoch. Partial Differ. Equ. Anal. Comput., 5:3 (2017), 319–342 | DOI | MR | Zbl

[3] F. S. Nasyrov, Lokalnye vremena, simmetrichnye integraly i stokhasticheskii analiz, Fizmatlit, M., 2011, 212 pp.

[1] A. I. Sukhinov, V. V. Sidoryakina, “Postroenie i issledovanie korrektnosti matematicheskoi modeli transporta i osazhdeniya vzvesei s uchetom izmeneniya relefa dna”, Vestn. Donskogo gos. tekh. un-ta, 18:4 (2018), 350–361 | DOI

[1] M. S. Tikhov, in “Abstracts of talks given at the 3rd International conference on stochastic methods”, Theory Probab. Appl., 64:1 (2019) | DOI | DOI

[2] M. S. Tikhov, “Fure-metod rekursivnogo otsenivaniya funktsii raspredeleniya v zavisimosti doza–effekt”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2018, no. 4, 31–49 | DOI

[1] B. V. Gnedenko, “Ob otsenke neizvestnykh parametrov raspredeleniya pri sluchainom chisle nezavisimykh nablyudenii”, Tr. Tbilisskogo matem. in-ta im. A. M. Razmadze, 92 (1989), 146–150 | MR | Zbl

[2] V. V. Ulyanov, M. Aoshima, Y. Fujikoshi, “Non-asymptotic results for Cornish–Fisher expansions”, J. Math. Sci. (N. Y.), 218:3 (2016), 363–368 | DOI | MR | Zbl

[3] V. E. Bening, N. K. Galieva, V. Yu. Korolev, “Asimptoticheskie razlozheniya dlya funktsii raspredeleniya statistik, postroennykh po vyborkam sluchainogo ob'ema”, Inform. i ee primen., 7:2 (2013), 75–83

[4] G. Kristof, M. M. Monakhov, V. V. Ulyanov, “Razlozheniya Chebysheva–Edzhvorta i Kornisha–Fishera vtorogo poryadka dlya raspredelenii statistik, postroennykh po vyborkam sluchainogo razmera”, Veroyatnost i statistika. 26, Zap. nauch. sem. POMI, 466, POMI, SPb., 2017, 167–207 | MR

[5] G. Christoph, V. V. Ulyanov, V. E. Bening, Second order expansions for sample median with random sample size, arXiv: 1905.07765

[6] Y. Fujikoshi, V. V. Ulyanov, R. Shimizu, Multivariate statistics. High-dimensional and large-sample approximations, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., Hoboken, NJ, 2010, xviii+533 pp. | DOI | MR | Zbl

[7] A. S. Markov, M. M. Monakhov, V. V. Ulyanov, “Razlozheniya tipa Kornisha–Fishera dlya raspredelenii statistik, postroennykh po vyborkam sluchainogo razmera”, Inform. i ee primen., 10:2 (2016), 84–91 | DOI

[1] I. V. Pavlov, S. I. Uglich, “Optimizatsiya slozhnykh sistem kvazilineinogo tipa s neskolkimi nezavisimymi prioritetami”, Vestnik RGUPS, 2017, no. 3(67), 140–145

[2] N. P. Krasii, “Suschestvovanie i edinstvennost tochki maksimuma v zadache optimizatsii kvazilineinykh modelei s nezavisimymi prioritetami”, Vestnik RGUPS, 2018, no. 4(72), 144–151

[1] V. Gončarov, “On the field of combinatory analysis”, Amer. Math. Soc. Transl. Ser. 2, 19, Amer. Math. Soc., Providence, RI, 1962, 1–46 | DOI | MR | MR | Zbl | Zbl

[1] E. Ermakova, P. Makhmutova, E. Yarovaya, “Branching random walks and their applications for epidemic modeling”, Stoch. Models, 35:3 (2019), 300–317 | DOI | MR | Zbl

[2] I. I. Khristolyubov, E. B. Yarovaya, “A limit theorem for supercritical random branching walks with branching sources of varying intensity”, Theory Probab. Appl., 64:3 (2019), 365–384 | DOI | DOI | MR | Zbl

[3] E. B. Yarovaya, “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI | MR | Zbl

[4] S. A. Molchanov, E. B. Yarovaya, “Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk”, Izv. Math., 76:6 (2012), 1190–1217 | DOI | DOI | MR | Zbl

[5] S. A. Molchanov, E. B. Yarovaya, “Large deviations for a symmetric branching random walk on a multidimensional lattice”, Proc. Steklov Inst. Math., 282 (2013), 186–201 | DOI | DOI | MR | Zbl

[1] V. G. Zadorozhnii, Metody variatsionnogo analiza, RKhD, M.–Izhevsk, 2006, 316 pp.

[2] V. G. Zadorozhniy, “Stabilization of linear systems by a multiplicative random noise”, Differ. Equ., 54:6 (2018), 728–747 | DOI | MR | Zbl

[1] R. Amir, I. V. Evstigneev, K. R. Schenk-Hoppé, “Asset market games of survival: a synthesis of evolutionary and dynamic games”, Ann. Finance, 9:2 (2013), 121–144 | DOI | MR | Zbl

[2] L. Blume, D. Easley, “Evolution and market behavior”, J. Econom. Theory, 58:1 (1992), 9–40 | DOI | MR | Zbl

[3] I. Evstigneev, T. Hens, K. R. Schenk-Hoppé, “Evolutionary behavioral finance”, The handbook of post crisis financial modeling, Palgrave Macmillan, London, 2016, 214–234 | DOI

[4] M. V. Zhitlukhin, Asymptotic distribution of capital in a model of an investment market with competition, arXiv: 1811.12491v1