Half-spaces with influential variable
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 142-150
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Boolean functions $f$ defined on Boolean cube $\{-1,1\}^n$ of
half-spaces, i.e., functions of the form $f(x)=\operatorname{sign}(\omega\cdot
x-\theta)$.
Half-space functions are often called linear threshold functions.
We assume that the Boolean cube $\{-1,1\}^n$ is equipped with a uniform measure.
We also assume that $\|\omega\|_2\leq 1$ and
$\|\omega\|_{\infty} = \delta$ for some $\delta>0$.
Let $0\leq\varepsilon\leq 1$ be such that $|\mathbf{E} f|\leq 1-\varepsilon$.
We prove that there exists a constant $C>0$ such that
$\max_i(\operatorname{Inf}_i f)\geq C\delta\varepsilon$, where
$\operatorname{Inf}_i f$ denotes the influence of the $i$th coordinate
of the function $f$.
This establishes the lower bound obtained earlier
by Matulef et al. [SIAM J. Comput., 39 (2010), pp. 2004–2047].
We also show that the optimal constant in this inequality exceeds
$3\sqrt{2}/64\approx 0.066$.
As an auxiliary result we prove a lower bound for small ball inequalities of
linear combinations of Rademacher random variables.
Keywords:
Boolean functions, small ball inequalities, linear threshold functions, Boolean cube
Mots-clés : influence.
Mots-clés : influence.
@article{TVP_2020_65_1_a8,
author = {D. Dzindzalieta and F. G\"otze},
title = {Half-spaces with influential variable},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {142--150},
publisher = {mathdoc},
volume = {65},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a8/}
}
D. Dzindzalieta; F. Götze. Half-spaces with influential variable. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 142-150. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a8/