Half-spaces with influential variable
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 142-150

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Boolean functions $f$ defined on Boolean cube $\{-1,1\}^n$ of half-spaces, i.e., functions of the form $f(x)=\operatorname{sign}(\omega\cdot x-\theta)$. Half-space functions are often called linear threshold functions. We assume that the Boolean cube $\{-1,1\}^n$ is equipped with a uniform measure. We also assume that $\|\omega\|_2\leq 1$ and $\|\omega\|_{\infty} = \delta$ for some $\delta>0$. Let $0\leq\varepsilon\leq 1$ be such that $|\mathbf{E} f|\leq 1-\varepsilon$. We prove that there exists a constant $C>0$ such that $\max_i(\operatorname{Inf}_i f)\geq C\delta\varepsilon$, where $\operatorname{Inf}_i f$ denotes the influence of the $i$th coordinate of the function $f$. This establishes the lower bound obtained earlier by Matulef et al. [SIAM J. Comput., 39 (2010), pp. 2004–2047]. We also show that the optimal constant in this inequality exceeds $3\sqrt{2}/64\approx 0.066$. As an auxiliary result we prove a lower bound for small ball inequalities of linear combinations of Rademacher random variables.
Keywords: Boolean functions, small ball inequalities, linear threshold functions, Boolean cube
Mots-clés : influence.
@article{TVP_2020_65_1_a8,
     author = {D. Dzindzalieta and F. G\"otze},
     title = {Half-spaces with influential variable},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {142--150},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a8/}
}
TY  - JOUR
AU  - D. Dzindzalieta
AU  - F. Götze
TI  - Half-spaces with influential variable
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 142
EP  - 150
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a8/
LA  - ru
ID  - TVP_2020_65_1_a8
ER  - 
%0 Journal Article
%A D. Dzindzalieta
%A F. Götze
%T Half-spaces with influential variable
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 142-150
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a8/
%G ru
%F TVP_2020_65_1_a8
D. Dzindzalieta; F. Götze. Half-spaces with influential variable. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 142-150. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a8/