On the shape of high excursions of Gaussian stationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 138-141
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the form of excursions of a Gaussian stationary process intersecting a high level $u$. We show that the trajectories fluctuate in this case in a narrow tube around the expected motion. We also find an upper bound for the probability that the trajectory intersects the boundary of this tube as $u$ goes off to infinity.
Keywords:
Gaussian processes, trajectory, asymptotics of the high excursion probability.
Mots-clés : excursion form
Mots-clés : excursion form
@article{TVP_2020_65_1_a7,
author = {E. V. Kremena},
title = {On the shape of high excursions of {Gaussian} stationary processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {138--141},
year = {2020},
volume = {65},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a7/}
}
E. V. Kremena. On the shape of high excursions of Gaussian stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 138-141. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a7/
[1] V. I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, RI, 1996, xii+206 pp. | DOI | MR | Zbl | Zbl
[2] J. Pickands, III, “Upcrossing probabilities for stationary Gaussian processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | MR | Zbl