On the pearson's chi-square test for normality of autoregression with outliers
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 126-137
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a stationary linear $\operatorname{AR}(p)$-model with observations subject to gross errors (outliers). The autoregression parameters and the distribution of innovations are unknown. Based on the residuals from the parameter estimators, we construct an analogue of an empirical distribution function and the corresponding Pearson chi-square type test for the normality of distributions of innovations (we recall that the normality of innovations is equivalent to that of the autoregression sequence itself). We find also the asymptotic power of the test under local alternatives and establish its qualitative robustness under a hypothesis and alternatives.
Mots-clés :
\bad autoregression
Keywords: outliers, residuals, empirical distribution function, Pearson chi-square test, robustness, local alternatives.
Keywords: outliers, residuals, empirical distribution function, Pearson chi-square test, robustness, local alternatives.
@article{TVP_2020_65_1_a6,
author = {M. V. Boldin},
title = {On the pearson's chi-square test for normality of autoregression with outliers},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {126--137},
year = {2020},
volume = {65},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a6/}
}
M. V. Boldin. On the pearson's chi-square test for normality of autoregression with outliers. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 126-137. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a6/
[1] M. V. Boldin, “On the power of Pearson's test under local alternatives in autoregression with outliers”, Math. Methods Statist., 28:1 (2019), 57–65 | DOI | MR | Zbl
[2] M. V. Boldin, M. N. Petriev, “On the empirical distribution function of residuals in autoregression with outliers and Pearson's chi-square type tests”, Math. Methods Statist., 27:4 (2018), 294–311 | DOI | MR | Zbl
[3] M. V. Boldin, G. I. Simonova, Yu. N. Tyurin, Sign-based methods in linear statistical models, Transl. Math. Monogr., 162, Amer. Math. Soc., Providence, RI, 1997, xii+234 pp. | MR | Zbl | Zbl
[4] R. D. Martin, V. J. Yohai, “Influence functionals for time series”, Ann. Statist., 14:3 (1986), 781–818 | DOI | MR | Zbl