On the pearson's chi-square test for normality of autoregression with outliers
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 126-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a stationary linear $\operatorname{AR}(p)$-model with observations subject to gross errors (outliers). The autoregression parameters and the distribution of innovations are unknown. Based on the residuals from the parameter estimators, we construct an analogue of an empirical distribution function and the corresponding Pearson chi-square type test for the normality of distributions of innovations (we recall that the normality of innovations is equivalent to that of the autoregression sequence itself). We find also the asymptotic power of the test under local alternatives and establish its qualitative robustness under a hypothesis and alternatives.
Mots-clés : \bad autoregression
Keywords: outliers, residuals, empirical distribution function, Pearson chi-square test, robustness, local alternatives.
@article{TVP_2020_65_1_a6,
     author = {M. V. Boldin},
     title = {On the pearson's chi-square test for normality of autoregression with outliers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {126--137},
     year = {2020},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a6/}
}
TY  - JOUR
AU  - M. V. Boldin
TI  - On the pearson's chi-square test for normality of autoregression with outliers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 126
EP  - 137
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a6/
LA  - ru
ID  - TVP_2020_65_1_a6
ER  - 
%0 Journal Article
%A M. V. Boldin
%T On the pearson's chi-square test for normality of autoregression with outliers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 126-137
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a6/
%G ru
%F TVP_2020_65_1_a6
M. V. Boldin. On the pearson's chi-square test for normality of autoregression with outliers. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 126-137. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a6/

[1] M. V. Boldin, “On the power of Pearson's test under local alternatives in autoregression with outliers”, Math. Methods Statist., 28:1 (2019), 57–65 | DOI | MR | Zbl

[2] M. V. Boldin, M. N. Petriev, “On the empirical distribution function of residuals in autoregression with outliers and Pearson's chi-square type tests”, Math. Methods Statist., 27:4 (2018), 294–311 | DOI | MR | Zbl

[3] M. V. Boldin, G. I. Simonova, Yu. N. Tyurin, Sign-based methods in linear statistical models, Transl. Math. Monogr., 162, Amer. Math. Soc., Providence, RI, 1997, xii+234 pp. | MR | Zbl | Zbl

[4] R. D. Martin, V. J. Yohai, “Influence functionals for time series”, Ann. Statist., 14:3 (1986), 781–818 | DOI | MR | Zbl