Integrability and regularity of the flow of stochastic differential equations with jumps
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 103-125
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We derive sufficient conditions for the differentiability of all orders for the
flow of stochastic differential equations with jumps and prove related
$L^p$-integrability results for all orders. Our results extend similar results
obtained by
H. Kunita
[Stochastic differential equations based on Lévy processes and
stochastic flows of diffeomorphisms, in Real and Stochastic Analysis,
Birkhäuser Boston, 2004, pp. 305–373]
for first order differentiability and rely on the Burkholder–Davis–Gundy (BDG)
inequality for time inhomogeneous Poisson random measures on $\mathbf{R}_+\times
\mathbf{R}$, for which we provide a new proof.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
stochastic differential equations with jumps, moment bounds, Poisson random measures, stochastic flows, Markov semigroups.
                    
                  
                
                
                @article{TVP_2020_65_1_a5,
     author = {J.-Ch. Breton and N. Privault},
     title = {Integrability and regularity of the flow of stochastic differential equations with jumps},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {103--125},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/}
}
                      
                      
                    TY - JOUR AU - J.-Ch. Breton AU - N. Privault TI - Integrability and regularity of the flow of stochastic differential equations with jumps JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 103 EP - 125 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/ LA - ru ID - TVP_2020_65_1_a5 ER -
%0 Journal Article %A J.-Ch. Breton %A N. Privault %T Integrability and regularity of the flow of stochastic differential equations with jumps %J Teoriâ veroâtnostej i ee primeneniâ %D 2020 %P 103-125 %V 65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/ %G ru %F TVP_2020_65_1_a5
J.-Ch. Breton; N. Privault. Integrability and regularity of the flow of stochastic differential equations with jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 103-125. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/
