@article{TVP_2020_65_1_a5,
author = {J.-Ch. Breton and N. Privault},
title = {Integrability and regularity of the flow of stochastic differential equations with jumps},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {103--125},
year = {2020},
volume = {65},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/}
}
TY - JOUR AU - J.-Ch. Breton AU - N. Privault TI - Integrability and regularity of the flow of stochastic differential equations with jumps JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 103 EP - 125 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/ LA - ru ID - TVP_2020_65_1_a5 ER -
J.-Ch. Breton; N. Privault. Integrability and regularity of the flow of stochastic differential equations with jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 103-125. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/
[1] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Stud. Adv. Math., 116, 2nd ed., Cambridge Univ. Press, Cambridge, 2009, xxx+460 pp. | DOI | MR | Zbl
[2] R. F. Bass, M. Cranston, “The Malliavin calculus for pure jump processes and applications to local time”, Ann. Probab., 14:2 (1986), 490–532 | DOI | MR | Zbl
[3] K. Bichteler, J. B. Gravereaux, J. Jacod, Malliavin calculus for processes with jumps, Stochastics Monogr., 2, Gordon and Breach Science Publishers, New York, 1987, x+161 pp. | MR | Zbl
[4] K. Bichteler, “Stochastic integrators with stationary independent increments”, Z. Wahrsch. Verw. Gebiete, 58:4 (1981), 529–548 | DOI | MR | Zbl
[5] K. Bichteler, Stochastic integration with jumps, Encyclopedia Math. Appl., 89, Cambridge Univ. Press, Cambridge, 2002, xiv+501 pp. | DOI | MR | Zbl
[6] K. Bichteler, J. Jacod, “Calcul de Malliavin pour les diffusions avec sauts: existence d'une densité dans le cas unidimensionnel”, Séminaire de probabilités XVII (1981/82), Lecture Notes in Math., 986, Springer, Berlin, 1983, 132–157 | DOI | MR | Zbl
[7] E. Hausenblas, “Maximal inequalities of the Itô integral with respect to Poisson random measures or Lévy processes on Banach spaces”, Potential Anal., 35:3 (2011), 223–251 | DOI | MR | Zbl
[8] D. J. Higham, P. E. Kloeden, “Numerical methods for nonlinear stochastic differential equations with jumps”, Numer. Math., 101:1 (2005), 101–119 | DOI | MR | Zbl
[9] H. Kunita, “Stochastic differential equations and stochastic flows of diffeomorphisms”, École d'été de probabilités de Saint-Flour XII – 1982, Lecture Notes in Math., 1097, Springer, Berlin, 1984, 143–303 | DOI | MR | Zbl
[10] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math., 24, Cambridge Univ. Press, Cambridge, 1990, xiv+346 pp. | MR | Zbl
[11] H. Kunita, “Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms”, Real and stochastic analysis, Trends Math., Birkhäuser Boston, Boston, MA, 2004, 305–373 | MR | Zbl
[12] É. Lenglart, D. Lépingle, M. Pratelli, “Présentation unifiée de certaines inégalités de la théorie des martingales”, Séminaire de probabilités XIV (Paris, 1978/1979), Lecture Notes in Math., 784, Springer, Berlin, 1980, 26–48 | DOI | MR | Zbl
[13] M. Pratelli, “Majorations dans $L^p$ du type Métivier–Pellaumail pour les semimartingales”, Séminaire de probabilités XVII (1981/82), Lecture Notes in Math., 986, Springer, Berlin, 1983, 125–131 | DOI | MR | Zbl
[14] Ph. E. Protter, Stochastic integration and differential equations, Appl. Math. (N. Y.), 21, Stoch. Model. Appl. Probab., 2nd ed., Springer-Verlag, Berlin, 2004, xiv+415 pp. | DOI | MR | Zbl
[15] Ph. Protter, D. Talay, “The Euler scheme for Lévy driven stochastic differential equations”, Ann. Probab., 25:1 (1997), 393–423 | DOI | MR | Zbl
[16] N. Privault, L. Wang, Stochastic SIR Lévy jump model with infinite activity, 2019, 28 pp., arXiv: 1911.12924
[17] R. Situ, Theory of stochastic differential equations with jumps and applications, Math. Anal. Tech. Appl. Eng., Springer, New York, 2005, xx+434 pp. | DOI | MR | Zbl
[18] Xinhong Zhang, Ke Wang, Dingshi Li, “Stochastic periodic solutions of stochastic differential equations driven by Lévy process”, J. Math. Anal. Appl., 430:1 (2015), 231–242 | DOI | MR | Zbl
[19] Yanli Zhou, Weiguo Zhang, “Threshold of a stochastic SIR epidemic model with Lévy jumps”, Phys. A, 446 (2016), 204–216 | DOI | MR | Zbl