Integrability and regularity of the flow of stochastic differential equations with jumps
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 103-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive sufficient conditions for the differentiability of all orders for the flow of stochastic differential equations with jumps and prove related $L^p$-integrability results for all orders. Our results extend similar results obtained by H. Kunita [Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms, in Real and Stochastic Analysis, Birkhäuser Boston, 2004, pp. 305–373] for first order differentiability and rely on the Burkholder–Davis–Gundy (BDG) inequality for time inhomogeneous Poisson random measures on $\mathbf{R}_+\times \mathbf{R}$, for which we provide a new proof.
Keywords: stochastic differential equations with jumps, moment bounds, Poisson random measures, stochastic flows, Markov semigroups.
@article{TVP_2020_65_1_a5,
     author = {J.-Ch. Breton and N. Privault},
     title = {Integrability and regularity of the flow of stochastic differential equations with jumps},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {103--125},
     year = {2020},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/}
}
TY  - JOUR
AU  - J.-Ch. Breton
AU  - N. Privault
TI  - Integrability and regularity of the flow of stochastic differential equations with jumps
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 103
EP  - 125
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/
LA  - ru
ID  - TVP_2020_65_1_a5
ER  - 
%0 Journal Article
%A J.-Ch. Breton
%A N. Privault
%T Integrability and regularity of the flow of stochastic differential equations with jumps
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 103-125
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/
%G ru
%F TVP_2020_65_1_a5
J.-Ch. Breton; N. Privault. Integrability and regularity of the flow of stochastic differential equations with jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 103-125. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a5/

[1] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Stud. Adv. Math., 116, 2nd ed., Cambridge Univ. Press, Cambridge, 2009, xxx+460 pp. | DOI | MR | Zbl

[2] R. F. Bass, M. Cranston, “The Malliavin calculus for pure jump processes and applications to local time”, Ann. Probab., 14:2 (1986), 490–532 | DOI | MR | Zbl

[3] K. Bichteler, J. B. Gravereaux, J. Jacod, Malliavin calculus for processes with jumps, Stochastics Monogr., 2, Gordon and Breach Science Publishers, New York, 1987, x+161 pp. | MR | Zbl

[4] K. Bichteler, “Stochastic integrators with stationary independent increments”, Z. Wahrsch. Verw. Gebiete, 58:4 (1981), 529–548 | DOI | MR | Zbl

[5] K. Bichteler, Stochastic integration with jumps, Encyclopedia Math. Appl., 89, Cambridge Univ. Press, Cambridge, 2002, xiv+501 pp. | DOI | MR | Zbl

[6] K. Bichteler, J. Jacod, “Calcul de Malliavin pour les diffusions avec sauts: existence d'une densité dans le cas unidimensionnel”, Séminaire de probabilités XVII (1981/82), Lecture Notes in Math., 986, Springer, Berlin, 1983, 132–157 | DOI | MR | Zbl

[7] E. Hausenblas, “Maximal inequalities of the Itô integral with respect to Poisson random measures or Lévy processes on Banach spaces”, Potential Anal., 35:3 (2011), 223–251 | DOI | MR | Zbl

[8] D. J. Higham, P. E. Kloeden, “Numerical methods for nonlinear stochastic differential equations with jumps”, Numer. Math., 101:1 (2005), 101–119 | DOI | MR | Zbl

[9] H. Kunita, “Stochastic differential equations and stochastic flows of diffeomorphisms”, École d'été de probabilités de Saint-Flour XII – 1982, Lecture Notes in Math., 1097, Springer, Berlin, 1984, 143–303 | DOI | MR | Zbl

[10] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math., 24, Cambridge Univ. Press, Cambridge, 1990, xiv+346 pp. | MR | Zbl

[11] H. Kunita, “Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms”, Real and stochastic analysis, Trends Math., Birkhäuser Boston, Boston, MA, 2004, 305–373 | MR | Zbl

[12] É. Lenglart, D. Lépingle, M. Pratelli, “Présentation unifiée de certaines inégalités de la théorie des martingales”, Séminaire de probabilités XIV (Paris, 1978/1979), Lecture Notes in Math., 784, Springer, Berlin, 1980, 26–48 | DOI | MR | Zbl

[13] M. Pratelli, “Majorations dans $L^p$ du type Métivier–Pellaumail pour les semimartingales”, Séminaire de probabilités XVII (1981/82), Lecture Notes in Math., 986, Springer, Berlin, 1983, 125–131 | DOI | MR | Zbl

[14] Ph. E. Protter, Stochastic integration and differential equations, Appl. Math. (N. Y.), 21, Stoch. Model. Appl. Probab., 2nd ed., Springer-Verlag, Berlin, 2004, xiv+415 pp. | DOI | MR | Zbl

[15] Ph. Protter, D. Talay, “The Euler scheme for Lévy driven stochastic differential equations”, Ann. Probab., 25:1 (1997), 393–423 | DOI | MR | Zbl

[16] N. Privault, L. Wang, Stochastic SIR Lévy jump model with infinite activity, 2019, 28 pp., arXiv: 1911.12924

[17] R. Situ, Theory of stochastic differential equations with jumps and applications, Math. Anal. Tech. Appl. Eng., Springer, New York, 2005, xx+434 pp. | DOI | MR | Zbl

[18] Xinhong Zhang, Ke Wang, Dingshi Li, “Stochastic periodic solutions of stochastic differential equations driven by Lévy process”, J. Math. Anal. Appl., 430:1 (2015), 231–242 | DOI | MR | Zbl

[19] Yanli Zhou, Weiguo Zhang, “Threshold of a stochastic SIR epidemic model with Lévy jumps”, Phys. A, 446 (2016), 204–216 | DOI | MR | Zbl