Local limit theorems for smoothed Bernoulli and other convolutions
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 79-102

Voir la notice de l'article provenant de la source Math-Net.Ru

We explore the asymptotic behavior of densities of sums of independent random variables that are convoluted with a small continuous noise.
Keywords: central limit theorem, local limit theorem.
@article{TVP_2020_65_1_a4,
     author = {S. G. Bobkov and A. Marsiglietti},
     title = {Local limit theorems for smoothed {Bernoulli} and other convolutions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {79--102},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a4/}
}
TY  - JOUR
AU  - S. G. Bobkov
AU  - A. Marsiglietti
TI  - Local limit theorems for smoothed Bernoulli and other convolutions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 79
EP  - 102
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a4/
LA  - ru
ID  - TVP_2020_65_1_a4
ER  - 
%0 Journal Article
%A S. G. Bobkov
%A A. Marsiglietti
%T Local limit theorems for smoothed Bernoulli and other convolutions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 79-102
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a4/
%G ru
%F TVP_2020_65_1_a4
S. G. Bobkov; A. Marsiglietti. Local limit theorems for smoothed Bernoulli and other convolutions. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 79-102. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a4/