Local limit theorems for smoothed Bernoulli and other convolutions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 79-102
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We explore the asymptotic behavior of densities of sums of independent random variables that are convoluted with a small continuous noise.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
central limit theorem, local limit theorem.
                    
                  
                
                
                @article{TVP_2020_65_1_a4,
     author = {S. G. Bobkov and A. Marsiglietti},
     title = {Local limit theorems for smoothed {Bernoulli} and other convolutions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {79--102},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a4/}
}
                      
                      
                    TY - JOUR AU - S. G. Bobkov AU - A. Marsiglietti TI - Local limit theorems for smoothed Bernoulli and other convolutions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 79 EP - 102 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a4/ LA - ru ID - TVP_2020_65_1_a4 ER -
S. G. Bobkov; A. Marsiglietti. Local limit theorems for smoothed Bernoulli and other convolutions. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 79-102. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a4/
