@article{TVP_2020_65_1_a4,
author = {S. G. Bobkov and A. Marsiglietti},
title = {Local limit theorems for smoothed {Bernoulli} and other convolutions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {79--102},
year = {2020},
volume = {65},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a4/}
}
S. G. Bobkov; A. Marsiglietti. Local limit theorems for smoothed Bernoulli and other convolutions. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 79-102. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a4/
[1] R. N. Bhattacharya, R. Ranga Rao, Normal approximation and asymptotic expansions, Classics Appl. Math., 64, corr. reprint, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010, xxii+316 pp. | DOI | MR | MR | Zbl | Zbl
[2] S. G. Bobkov, “Asymptotic expansions for products of characteristic functions under moment assumptions of non-integer orders”, Convexity and concentration, IMA Vol. Math. Appl., 161, Springer, New York, 2017, 297–357 | DOI | MR | Zbl
[3] S. G. Bobkov, G. P. Chistyakov, F. Götze, “Fisher information and the central limit theorem”, Probab. Theory Related Fields, 159:1-2 (2014), 1–59 | DOI | MR | Zbl
[4] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl
[5] H. Iwaniec, E. Kowalski, Analytic number theory, Amer. Math. Soc. Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004, xii+615 pp. | DOI | MR | Zbl
[6] V. V. Petrov, “On local limit theorems for sums of independent random variables”, Theory Probab. Appl., 9:2 (1964), 312–320 | DOI | MR | Zbl
[7] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | DOI | MR | MR | Zbl | Zbl
[8] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl