Asymptotics of the minimum sufficient number of observations for $d$-guaranteed discrimination of two-sided hypotheses
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 63-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of constructing guarantee procedures of statistical inference with fixed minimal observation number $n^*$ for discrimination of two hypotheses $H_0\colon\theta\in[\theta_1,\theta_2]$ and $H_1\colon\theta\notin[\theta_1,\theta_2]$ with a one-dimensional parameter $\theta$ under the so-called $d$-posterior approach. Here, constraints are placed on the conditional probabilities for the validity of one or another hypothesis under the condition that this hypothesis is rejected. We give an asymptotic formula for $n^*$ in a scheme with severe (tending to zero) constraints on these conditional probabilities of hypotheses. Earlier, Volodin and Novikov found a similar formula for discrimination of one-sided hypotheses. In the present paper, the proof of the asymptotic formula is carried out under weaker constraints on the probability model. The accuracy of our formula is illustrated numerically for some probability models.
Keywords: Bayesian paradigm, $d$-posterior approach, discrimination of two hypotheses, minimal sample size, asymptotic analysis.
@article{TVP_2020_65_1_a3,
     author = {R. F. Salimov and S. V. Simushkin},
     title = {Asymptotics of the minimum sufficient number of observations for $d$-guaranteed discrimination of two-sided hypotheses},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {63--78},
     year = {2020},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a3/}
}
TY  - JOUR
AU  - R. F. Salimov
AU  - S. V. Simushkin
TI  - Asymptotics of the minimum sufficient number of observations for $d$-guaranteed discrimination of two-sided hypotheses
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 63
EP  - 78
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a3/
LA  - ru
ID  - TVP_2020_65_1_a3
ER  - 
%0 Journal Article
%A R. F. Salimov
%A S. V. Simushkin
%T Asymptotics of the minimum sufficient number of observations for $d$-guaranteed discrimination of two-sided hypotheses
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 63-78
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a3/
%G ru
%F TVP_2020_65_1_a3
R. F. Salimov; S. V. Simushkin. Asymptotics of the minimum sufficient number of observations for $d$-guaranteed discrimination of two-sided hypotheses. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a3/

[1] D. S. Simushkin, S. V. Simushkin, I. N. Volodin, “$D$-guaranteed discrimination of statistical hypotheses: a review of results and unsolved problems”, J. Math. Sci. (N. Y.), 228:5 (2018), 543–565 | DOI | MR | Zbl

[2] S. V. Simushkin, Optimalnye $d$-garantiinye protsedury razlicheniya dvukh gipotez, Rukopis dep. v VINITI, No 5547-81, 1981, 47 pp.

[3] S. V. Simushkin, “Confidence bounds and narrowest reliable intervals in $d$-posterior approach”, Lobachevskii J. Math., 39:3 (2018), 388–397 | DOI | MR | Zbl

[4] I. N. Volodin, An. A. Novikov, “Asymptotics of the necessary sample size in testing parametric hypotheses: $d$-posterior approach”, Math. Methods Statist., 7:1 (1998), 111–121 | MR | Zbl

[5] I. A. Ibragimov, R. Z. Has'minskiĭ, Statistical estimation. Asymptotic theory, Appl. Math., 16, Springer-Verlag, New York–Berlin, 1981, vii+403 pp. | MR | MR | Zbl | Zbl

[6] A. W. van der Vaart, Asymptotic statistics, Camb. Ser. Stat. Probab. Math., 3, Cambridge Univ. Press, Cambridge, 2000, xvi+443 pp. | DOI | MR | Zbl