Limit theorems for functions of a fractional Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 42-62

Voir la notice de l'article provenant de la source Math-Net.Ru

Sample statistics of samples from a fractional Brownian motion with Hurst exponent $H$, and in particular, autocovariance statistics, are considered. Two statistics characterizing the covariate dependence between the increments of this process are studied; in particular, their asymptotic properties and the limit distributions are examined. Each of the statistics is shown to converge almost everywhere; their limits are evaluated. It is found that these statistics have different limit distributions depending on the value of $H$. A complete description of these distributions in terms of semi-invariants is put forward.
Keywords: random processes, probability theory, fractional Brownian motion, Hurst exponent, limit theorems.
@article{TVP_2020_65_1_a2,
     author = {A. V. Savitskii},
     title = {Limit theorems for functions of a fractional {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {42--62},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a2/}
}
TY  - JOUR
AU  - A. V. Savitskii
TI  - Limit theorems for functions of a fractional Brownian motion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 42
EP  - 62
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a2/
LA  - ru
ID  - TVP_2020_65_1_a2
ER  - 
%0 Journal Article
%A A. V. Savitskii
%T Limit theorems for functions of a fractional Brownian motion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 42-62
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a2/
%G ru
%F TVP_2020_65_1_a2
A. V. Savitskii. Limit theorems for functions of a fractional Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 42-62. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a2/