Limit theorems for functions of a fractional Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 42-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sample statistics of samples from a fractional Brownian motion with Hurst exponent $H$, and in particular, autocovariance statistics, are considered. Two statistics characterizing the covariate dependence between the increments of this process are studied; in particular, their asymptotic properties and the limit distributions are examined. Each of the statistics is shown to converge almost everywhere; their limits are evaluated. It is found that these statistics have different limit distributions depending on the value of $H$. A complete description of these distributions in terms of semi-invariants is put forward.
Keywords: random processes, probability theory, fractional Brownian motion, Hurst exponent, limit theorems.
@article{TVP_2020_65_1_a2,
     author = {A. V. Savitskii},
     title = {Limit theorems for functions of a fractional {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {42--62},
     year = {2020},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a2/}
}
TY  - JOUR
AU  - A. V. Savitskii
TI  - Limit theorems for functions of a fractional Brownian motion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 42
EP  - 62
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a2/
LA  - ru
ID  - TVP_2020_65_1_a2
ER  - 
%0 Journal Article
%A A. V. Savitskii
%T Limit theorems for functions of a fractional Brownian motion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 42-62
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a2/
%G ru
%F TVP_2020_65_1_a2
A. V. Savitskii. Limit theorems for functions of a fractional Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 42-62. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a2/

[1] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, 2-e izd., Fizmatlit, M., 2005, 400 pp.

[2] A. N. Shiryaev, “Part 1. Facts. Models”, Essentials of stochastic finance, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 2–379 | DOI | MR | Zbl

[3] B. B. Mandelbrot, J. W. Van Ness, “Fractional Brownian motions, fractional noises and applications”, SIAM Rev., 10:4 (1968), 422–437 | DOI | MR | Zbl

[4] T. W. Anderson, Jr., The statistical analysis of time series, John Wiley Sons, Inc., New York–London–Sydney, 1971, xiv+704 pp. | MR | Zbl

[5] M. Rosenblatt, “Independence and dependence”, Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, v. 2, Univ. California Press, Berkeley, CA, 1961, 431–443 | MR | Zbl

[6] M. S. Taqqu, “Weak convergence to fractional Brownian motion and to the Rosenblatt process”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31 (1975), 287–302 | DOI | MR | Zbl

[7] R. Fox, M. S. Taqqu, “Noncentral limit theorems for quadratic forms in random variables having long-range dependence”, Ann. Probab., 13:2 (1985), 428–446 | DOI | MR | Zbl

[8] A. N. Kolmogorov, “Uproschennoe dokazatelstvo ergodicheskoi teoremy Birkgofa–Khinchina”, UMN, 1938, no. 5, 52–56

[9] E. J. Hannan, “The asymptotic distribution of serial covariances”, Ann. Statist., 4:2 (1976), 396–399 | DOI | MR | Zbl

[10] B. V. Gnedenko, The theory of probability, Chelsea Publishing Co., New York, 1967, 529 pp. | MR | MR | Zbl

[11] A. M. Chebotarev, Vvedenie v teoriyu veroyatnostei i matematicheskuyu statistiku dlya fizikov, MFTI, M., 2008, 249 pp.