On upper functions for integral quadratic functionals based on time-varying Ornstein--Uhlenbeck process
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 23-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine the asymptotic behavior of integral quadratic functionals defined on time-varying Ornstein–Uhlenbeck processes. We find an upper function that majorizes with probability 1 the deviation of the integral from its expected value as time increases. The results obtained are applied to evaluate the control performance for stochastic linear-quadratic regulators over an infinite time horizon on asymptotically stable control laws.
Keywords: time-varying Ornstein–Uhlenbeck process, upper function, quadratic functional, asymptotic stability, control, stochastic regulator.
@article{TVP_2020_65_1_a1,
     author = {E. S. Palamarchuk},
     title = {On upper functions for integral quadratic functionals based on time-varying {Ornstein--Uhlenbeck} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {23--41},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a1/}
}
TY  - JOUR
AU  - E. S. Palamarchuk
TI  - On upper functions for integral quadratic functionals based on time-varying Ornstein--Uhlenbeck process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 23
EP  - 41
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a1/
LA  - ru
ID  - TVP_2020_65_1_a1
ER  - 
%0 Journal Article
%A E. S. Palamarchuk
%T On upper functions for integral quadratic functionals based on time-varying Ornstein--Uhlenbeck process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 23-41
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a1/
%G ru
%F TVP_2020_65_1_a1
E. S. Palamarchuk. On upper functions for integral quadratic functionals based on time-varying Ornstein--Uhlenbeck process. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 23-41. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a1/