On upper functions for integral quadratic functionals based on time-varying Ornstein–Uhlenbeck process
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 23-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We examine the asymptotic behavior of integral quadratic functionals defined on time-varying Ornstein–Uhlenbeck processes. We find an upper function that majorizes with probability 1 the deviation of the integral from its expected value as time increases. The results obtained are applied to evaluate the control performance for stochastic linear-quadratic regulators over an infinite time horizon on asymptotically stable control laws.
Keywords: time-varying Ornstein–Uhlenbeck process, upper function, quadratic functional, asymptotic stability, control, stochastic regulator.
@article{TVP_2020_65_1_a1,
     author = {E. S. Palamarchuk},
     title = {On upper functions for integral quadratic functionals based on time-varying {Ornstein{\textendash}Uhlenbeck} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {23--41},
     year = {2020},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a1/}
}
TY  - JOUR
AU  - E. S. Palamarchuk
TI  - On upper functions for integral quadratic functionals based on time-varying Ornstein–Uhlenbeck process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 23
EP  - 41
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a1/
LA  - ru
ID  - TVP_2020_65_1_a1
ER  - 
%0 Journal Article
%A E. S. Palamarchuk
%T On upper functions for integral quadratic functionals based on time-varying Ornstein–Uhlenbeck process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 23-41
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a1/
%G ru
%F TVP_2020_65_1_a1
E. S. Palamarchuk. On upper functions for integral quadratic functionals based on time-varying Ornstein–Uhlenbeck process. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 23-41. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a1/

[1] T. Caraballo, “On the decay rate of solutions of non-autonomous differential systems”, Electron. J. Differential Equations, 2001 (2001), 5, 17 pp. | MR | Zbl

[2] E. S. Palamarchuk, “On the generalization of logarithmic upper function for solution of a linear stochastic differential equation with a nonexponentially stable matrix”, Differ. Equ., 54:2 (2018), 193–200 | DOI | DOI | MR | Zbl

[3] E. S. Palamarchuk, “Analysis of the asymptotic behavior of the solution to a linear stochastic differential equation with subexponentially stable matrix and its application to a control problem”, Theory Probab. Appl., 62:4 (2018), 522–533 | DOI | DOI | MR | Zbl

[4] E. Benhamou, E. Gobet, M. Miri, “Time dependent Heston model”, SIAM J. Financial Math., 1:1 (2010), 289–325 | DOI | MR | Zbl

[5] A. A. Novikov, T. G. Ling, N. Kordzakhia, “Pricing of volume-weighted average options: analytical approximations and numerical results”, Inspired by finance, Springer, Cham, 2014, 461–474 | DOI | MR | Zbl

[6] O. O. Aalen, H. K. Gjessing, “Survival models based on the Ornstein–Uhlenbeck process”, Lifetime Data Anal., 10:4 (2004), 407–423 | DOI | MR | Zbl

[7] N. Kazantzis, “Risk-relevant indices for the characterization of persistence of chemicals in a multimedia environment”, J. Loss Prevent. Proc., 22:6 (2009), 830–838 | DOI

[8] H. Kwakernaak, R. Sivan, Linear optimal control systems, Wiley-Interscience [John Wiley Sons], New York–London–Sydney, xxv+575 pp. | MR | Zbl

[9] E. S. Palamarchuk, “Analysis of criteria for long-run average in the problem of stochastic linear regulator”, Autom. Remote Control, 77:10 (2016), 1756–1767 | DOI | MR | Zbl

[10] M. San Miguel, J. M. Sancho, “Theory of nonlinear Gaussian noise”, Z. Phys. B, 43:4 (1981), 361–372 | DOI

[11] T. Dankel, Jr., “On the distribution of the integrated square of the Ornstein–Uhlenbeck process”, SIAM J. Appl. Math., 51:2 (1991), 568–574 | DOI | MR | Zbl

[12] A. S. Cherny, A. N. Shiryaev, “On criteria for the uniform integrability of Brownian stochastic exponentials”, Optimal control and partial differential equations, In honor of Professor Alain Bensoussan's 60th anniversary, IOS, Amsterdam, 2001, 80–92 | MR | Zbl

[13] T. A. Belkina, Yu. M. Kabanov, E. L. Presman, “On a stochastic optimality of the feedback control in the LQG-problem”, Theory Probab. Appl., 48:4 (2004), 592–603 | DOI | DOI | MR | Zbl

[14] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl

[15] M. H. A. Davis, Linear estimation and stochastic control, Chapman and Hall Math. Ser., Chapman and Hall, London; Halsted Press [John Wiley Sons], New York, 1977, xii+224 pp. | MR | MR | Zbl | Zbl

[16] E. S. Palamarchuk, “Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process”, Comput. Math. Math. Phys., 54:1 (2014), 83–96 | DOI | DOI | MR | Zbl

[17] W. Bar, F. Dittrich, “Useful formula for moment computation of normal random variables with nonzero means”, IEEE Trans. Automat. Control, 16:3 (1971), 263–265 | DOI

[18] H. Cramér, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley Sons, Inc., New York–London–Sydney, 1967, xii+348 pp. | MR | Zbl | Zbl

[19] Jia-gang Wang, “A law of the iterated logarithm for stochastic integrals”, Stochastic Process. Appl., 47:2 (1993), 215–228 | DOI | MR | Zbl

[20] E. Palamarchuk, “On infinite time linear-quadratic Gaussian control of inhomogeneous systems”, 2016 European Control Conference (ECC) (Aalborg, 2016), IEEE, 2017, 2477–2482 | DOI

[21] E. S. Palamarchuk, “Stabilization of linear stochastic systems with a discount: modeling and estimation of the long-term effects from the application of optimal control strategies”, Math. Models Comput. Simul., 7:4 (2015), 381–388 | DOI | MR | Zbl

[22] P. D. Pra, G. B. Di Masi, B. Trivellato, “Pathwise optimality in stochastic control”, SIAM J. Control Optim., 39:5 (2000), 1540–1557 | DOI | MR | Zbl

[23] T. Wada, T. Itani, Y. Fujisaki, “A stopping rule for linear stochastic approximation”, 49th IEEE Conference on Decision and Control (CDC) (Atlanta, GA, 2010), IEEE, 2011, 4171–4176 | DOI

[24] F. Lillo, R. N. Mantegna, “Drift-controlled anomalous diffusion: a solvable Gaussian model”, Phys. Rev. E, 61:5 (2000), R4675 | DOI