Moment inequalities for linear and nonlinear statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 3-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider statistics of the form $T =\sum_{j=1}^n \xi_{j} f_{j}+ \mathcal R $, where $\xi_j, f_j$, $j=1, \dots, n$, and $\mathcal R$ are $\mathfrak M$-measurable random variables for some $\sigma$-algebra $ \mathfrak M$. Assume that there exist $\sigma$-algebras $\mathfrak M^{(1)}, \dots, \mathfrak M^{(n)}$, $ \mathfrak M^{(j)} \subset \mathfrak M$, $j=1, \dots, n$, such that ${E}{(\xi_j\mid \mathfrak M^{(j)})}=0$. Under these assumptions, we prove an inequality for ${E}|T|^p$ with $p \ge 2$. We also discuss applications of the main result of the paper to estimation of moments of linear forms, $U$-statistics, and perturbations of the characteristic equation for the Stieltjes transform of Wigner's semicircle law.
Keywords: statistics of independent random variables, Rosenthal's inequality, $U$-statistics, Wigner's semicircle law, moment inequalities.
Mots-clés : Stieltjes transform
@article{TVP_2020_65_1_a0,
     author = {F. G\"otze and A. A. Naumov and A. N. Tikhomirov},
     title = {Moment inequalities for linear and nonlinear statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--22},
     year = {2020},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. A. Naumov
AU  - A. N. Tikhomirov
TI  - Moment inequalities for linear and nonlinear statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 3
EP  - 22
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/
LA  - ru
ID  - TVP_2020_65_1_a0
ER  - 
%0 Journal Article
%A F. Götze
%A A. A. Naumov
%A A. N. Tikhomirov
%T Moment inequalities for linear and nonlinear statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 3-22
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/
%G ru
%F TVP_2020_65_1_a0
F. Götze; A. A. Naumov; A. N. Tikhomirov. Moment inequalities for linear and nonlinear statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/

[1] Zhidong Bai, J. W. Silverstein, Spectral analysis of large dimensional random matrices, Springer Ser. Statist., 2nd ed., Springer, New York, 2010, xvi+551 pp. | DOI | MR | Zbl

[2] C. Cacciapuoti, A. Maltsev, B. Schlein, “Bounds for the Stieltjes transform and the density of states of Wigner matrices”, Probab. Theory Related Fields, 163:1-2 (2015), 1–59 | DOI | MR | Zbl

[3] L. Erd{ő}s, A. Knowles, Horng-Tzer Yau, Jun Yin, “The local semicircle law for a general class of random matrices”, Electron. J. Probab., 18 (2013), 59, 58 pp. | DOI | MR | Zbl

[4] L. Erd{ő}s, B. Schlein, Horng-Tzer Yau, “Local semicircle law and complete delocalization for Wigner random matrices”, Comm. Math. Phys., 287:2 (2009), 641–655 | DOI | MR | Zbl

[5] L. Erd{ő}s, B. Schlein, Horng-Tzer Yau, “Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices”, Ann. Probab., 37:3 (2009), 815–852 | DOI | MR | Zbl

[6] L. Erd{ő}s, B. Schlein, Horng-Tzer Yau, “Wegner estimate and level repulsion for Wigner random matrices”, Int. Math. Res. Not. IMRN, 2010:3 (2010), 436–479 | DOI | MR | Zbl

[7] F. Götze, A. A. Naumov, A. N. Tikhomirov, “Local semicircle law under moment conditions: the Stieltjes transform, rigidity and delocalization”, Theory Probab. Appl., 62:1 (2018), 58–83 | DOI | DOI | MR | Zbl

[8] F. Götze, A. Naumov, A. Tikhomirov, D. Timushev, “On the local semicircular law for Wigner ensembles”, Bernoulli, 24:3 (2018), 2358–2400 | DOI | MR | Zbl

[9] F. Götze, A. Tikhomirov, “Rate of convergence to the semi-circular law”, Probab. Theory Related Fields, 127:2 (2003), 228–276 | DOI | MR | Zbl

[10] F. Götze, A. Tikhomirov, “Optimal bounds for convergence of expected spectral distributions to the semi-circular law”, Probab. Theory Related Fields, 165:1-2 (2016), 163–233 | DOI | MR | Zbl

[11] W. B. Johnson, G. Schechtman, J. Zinn, “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables”, Ann. Probab., 13:1 (1985), 234–253 | DOI | MR | Zbl

[12] H. P. Rosenthal, “On the subspaces of $L^{p}$ ($p>2$) spanned by sequences of independent random variables”, Israel J. Math., 8:3 (1970), 273–303 | DOI | MR | Zbl

[13] A. N. Tikhomirov, “Prostye dokazatelstva neravenstva Rozentalya dlya lineinykh form ot nezavisimykh sluchainykh velichin i ego obobscheniya na kvadratichnye formy”, Izv. Komi NTs URO RAN, 2018, no. 2(34), 8–13