Moment inequalities for linear and nonlinear statistics
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 3-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider statistics of the form $T =\sum_{j=1}^n \xi_{j} f_{j}+ \mathcal R $, where $\xi_j, f_j$, $j=1, \dots, n$, and $\mathcal R$ are $\mathfrak M$-measurable random variables for some $\sigma$-algebra $ \mathfrak M$. Assume that there exist $\sigma$-algebras $\mathfrak M^{(1)}, \dots, \mathfrak M^{(n)}$, $ \mathfrak M^{(j)} \subset \mathfrak M$, $j=1, \dots, n$, such that ${E}{(\xi_j\mid \mathfrak M^{(j)})}=0$. Under these assumptions, we prove an inequality for ${E}|T|^p$ with $p \ge 2$. We also discuss applications of the main result of the paper to estimation of moments of linear forms, $U$-statistics, and perturbations of the characteristic equation for the Stieltjes transform of Wigner's semicircle law.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
statistics of independent random variables, Rosenthal's inequality, $U$-statistics, Wigner's semicircle law, moment inequalities.
Mots-clés : Stieltjes transform
                    
                  
                
                
                Mots-clés : Stieltjes transform
@article{TVP_2020_65_1_a0,
     author = {F. G\"otze and A. A. Naumov and A. N. Tikhomirov},
     title = {Moment inequalities for linear and nonlinear statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/}
}
                      
                      
                    TY - JOUR AU - F. Götze AU - A. A. Naumov AU - A. N. Tikhomirov TI - Moment inequalities for linear and nonlinear statistics JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2020 SP - 3 EP - 22 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/ LA - ru ID - TVP_2020_65_1_a0 ER -
F. Götze; A. A. Naumov; A. N. Tikhomirov. Moment inequalities for linear and nonlinear statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/
