Moment inequalities for linear and nonlinear statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 3-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider statistics of the form $T =\sum_{j=1}^n \xi_{j} f_{j}+ \mathcal R $, where $\xi_j, f_j$, $j=1, \dots, n$, and $\mathcal R$ are $\mathfrak M$-measurable random variables for some $\sigma$-algebra $ \mathfrak M$. Assume that there exist $\sigma$-algebras $\mathfrak M^{(1)}, \dots, \mathfrak M^{(n)}$, $ \mathfrak M^{(j)} \subset \mathfrak M$, $j=1, \dots, n$, such that ${E}{(\xi_j\mid \mathfrak M^{(j)})}=0$. Under these assumptions, we prove an inequality for ${E}|T|^p$ with $p \ge 2$. We also discuss applications of the main result of the paper to estimation of moments of linear forms, $U$-statistics, and perturbations of the characteristic equation for the Stieltjes transform of Wigner's semicircle law.
Keywords: statistics of independent random variables, Rosenthal's inequality, $U$-statistics, Wigner's semicircle law, moment inequalities.
Mots-clés : Stieltjes transform
@article{TVP_2020_65_1_a0,
     author = {F. G\"otze and A. A. Naumov and A. N. Tikhomirov},
     title = {Moment inequalities for linear and nonlinear statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. A. Naumov
AU  - A. N. Tikhomirov
TI  - Moment inequalities for linear and nonlinear statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2020
SP  - 3
EP  - 22
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/
LA  - ru
ID  - TVP_2020_65_1_a0
ER  - 
%0 Journal Article
%A F. Götze
%A A. A. Naumov
%A A. N. Tikhomirov
%T Moment inequalities for linear and nonlinear statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2020
%P 3-22
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/
%G ru
%F TVP_2020_65_1_a0
F. Götze; A. A. Naumov; A. N. Tikhomirov. Moment inequalities for linear and nonlinear statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 65 (2020) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TVP_2020_65_1_a0/