A remark on the distribution of values for functions of a large number of variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 791-797 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the values of functions that depend on a large number of similar variables are almost constant from the point of view of an observer evaluating their values at random points of the domains of their definition (the “nonlinear law of large numbers”). We show that, under certain normalization conditions, the distribution of values of such functions tends to a normal distribution as the number of variables grows.
Keywords: law of large numbers, measure concentration principle.
Mots-clés : normal distribution
@article{TVP_2019_64_4_a8,
     author = {V. A. Zorich},
     title = {A~remark on the distribution of values for functions of a large number of variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {791--797},
     year = {2019},
     volume = {64},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a8/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - A remark on the distribution of values for functions of a large number of variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 791
EP  - 797
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a8/
LA  - ru
ID  - TVP_2019_64_4_a8
ER  - 
%0 Journal Article
%A V. A. Zorich
%T A remark on the distribution of values for functions of a large number of variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 791-797
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a8/
%G ru
%F TVP_2019_64_4_a8
V. A. Zorich. A remark on the distribution of values for functions of a large number of variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 791-797. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a8/

[1] P. Lévy, Problèmes concrets d'analyse fonctionnelle, 2nd ed., Gauthier-Villars, Paris, 1951, xiv+484 pp. | MR | MR | Zbl | Zbl

[2] V. D. Milman, G. Schechtman, Asymptotic theory of finite dimensional normed spaces, With an appendix by M. Gromov, Lecture Notes in Math., 1200, Springer-Verlag, Berlin, 1986, viii+156 pp. | DOI | MR | Zbl

[3] K. Ball, “An elementary introduction to modern convex geometry”, Flavors of geometry, Math. Sci. Res. Inst. Publ., 31, Cambridge Univ. Press, Cambridge, 1997, 1–58 | MR | Zbl

[4] V. D. Milman, “Geometrization of probability”, Geometry and dynamics of groups and spaces, Progr. Math., 265, Birkhäuser, Basel, 2008, 647–667 | DOI | MR | Zbl

[5] V. A. Zorich, “Geometry and probability”, Theory Probab. Appl., 62:2 (2018), 236–251 | DOI | DOI | MR

[6] H. A. Lorentz, Les théories statistiques en thermodynamique, Rédigées en 1913 par L. Dunoyer (Collège de France, 1912), B. G. Teubner, Leipzig–Berlin, 1916, 120 pp. | MR | Zbl

[7] E. Shredinger, Lektsii po fizike, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2001, 160 pp.

[8] C. E. Shannon, “Communication in the presence of noise”, Proc. I.R.E., 37:1 (1949), 10–21 | DOI | MR

[9] M. L. Gromov, “Colourful categories”, Russian Math. Surveys, 70:4 (2015), 591–655 | DOI | DOI | MR | Zbl

[10] B. Klartag, High-dimensional distributions with convexity properties http://www.math.tau.ac.il/~klartagb/papers/euro.pdf

[11] R. Vershynin, High-dimensional probability. An introduction with applications in data science, Camb. Ser. Stat. Probab. Math., 47, Cambridge Univ. Press, Cambridge, 2018, xiv+284 pp. | DOI | MR | Zbl

[12] R. van Handel, Probability in high dimension, APC 550 Lecture Notes. Princeton Univ. https://web.math.princeton.edu/~rvan/APC550.pdf